Skip to content

galexandros/tinyplot

 
 

Repository files navigation

tinyplot

CRAN version R-universe status badge R-CMD-check Docs

What

A lightweight extension of the base R graphics system, with support for automatic grouping, legends, facets, and various other enhancements.

tinyplot is not yet on CRAN, but can be installed from R-universe.

install.packages("tinyplot", repos = "https://grantmcdermott.r-universe.dev")

Our goal is to submit to CRAN within the first few months of 2024, once we have settled on some remaining design choices and features support. You can take a look at the open issues to see what’s currently under consideration. Please feel free to weigh on these if you have opinions. We want end users to have a say in determining the final product.

Why

R users are spoiled for choice when it comes to visualization frameworks. The options include ggplot2 (arguably the most important graphics system of the last decade) and lattice, not to mention a bewildering array of extensions built on top of, around, and in between these amazing packages.

As a result, it is perhaps not surprising that the base R graphics system sometimes gets short shrift. This is unfortunate, because base R offers very powerful and flexible plotting facilities. Just type demo(graphics) or demo(persp) into your R console to get an idea. Or, take a look at these two excellent tutorials. The downside of this power and flexibility is that base R plotting can require a fair bit of manual tinkering. A case in point is plotting grouped data with an appropriate legend. Doing so with the generic plot() function can require several function calls or a loop, fiddling with your plot regions, and then generating the legend manually.

The tinyplot package aims to remove this overhead. It provides a lightweight (zero dependency) extension of the base R graphics system with various convenience features, particularly for representing grouped data. For example, the core tinyplot() function—or its shorthand alias plt()—makes it easy to plot different groups of a dataset in a single function call and highlight these groups using modern colour palettes. Coincident with this grouping support, tinyplot also produces automatic legends with scope for further customization. While the package offers several other enhancements like facets, it tries as far as possible to be a drop-in replacement for the equivalent base plotting function. Users should generally be able to swap a valid plot() call for tinyplot() without any changes to the expected output.

Quickstart

The tinyplot website includes a detailed introductory tutorial, with numerous examples. But here are some quickstart examples of the package in action.

library(tinyplot)

Grouped scatterplot with automatic legend:

# with(iris, tinyplot(x = Petal.Length, y = Sepal.Length, by = Species)) # atomic
tinyplot(Sepal.Length ~ Petal.Length | Species, data = iris)             # formula

If you would prefer to save on a few keystrokes, you can use the shorthand plt() alias instead instead of typing out tinyplot() in full. Here’s the same plot with this shorthand alias, plus a few aesthetic tweaks:

plt(
  Sepal.Length ~ Petal.Length | Species, 
  data = iris,
  palette = "dark", pch  = 16,
  grid = TRUE, frame = FALSE
)

Grouped grouped density plot with automatic legend:

plt(
  ~ Petal.Length | Species,
  data = iris,
  type = "density",
  palette = "dark", fill = "by",
  grid = TRUE,
  main = "Distribution of petal lengths by species"
)

Grouped scatterplot with (continuous) gradient legend, combined with facet layout:

plt(
  Sepal.Length ~ Petal.Length | Sepal.Length, data = iris,
  facet = ~Species, facet.args = list(bg = "grey90"),
  pch = 19,
  main = "Faceted Species!",
  grid = TRUE, frame = FALSE
)

Hopefully, these have been enough to pique your interest. Head over to the intro tutorial for many more examples, including range plots and customization.

About

Lightweight extension of the base R graphics system

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • R 94.3%
  • Lua 5.5%
  • CSS 0.2%