Skip to content

Pre-Processing of Annotated Music Video Corpora (COGNIMUSE and DEAP)

License

Notifications You must be signed in to change notification settings

gcunhase/AnnotatedMV-PreProcessing

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

46 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

DOI

About

Pre-processing of annotated music video datasets:

Contents

RequirementsHow to UseHow to Cite

Requirements

Tested with Python 2.7 and Ubuntu 16.04

pip install -r requirements.txt
sudo apt-get install -y sox

See more details

How to Use

COGNIMUSE

  1. Download COGNIMUSE dataset:

    • Download annotations
      • Emotion: 2D (valence-arousal) with ranges between [-1, 1]
      • 2 emotions = {Neg: 0, Pos: 1}
      • 4 emotions = {NegHigh: 0, NegLow: 1, PosLow: 2, PosHigh: 3}
    • Download videos, extract the last 30 minutes of each video, and copy them to data/
    • The final directory structure should be as follow:
      .data
      +-- BMI
      |   +-- emotion
      |   |   +-- intended_1.dat
      |   +-- text
      |   |   +-- subtitle.srt
      |   +-- video.mp4
      ...
      
  2. Splice full video (with subtitle information) into S seconds each -> video, emotion, audio, text

    • Run: python video2splice.py
    • Output:
      .data_test
      +-- BMI
      |   +-- audio_splices_Xsecs
      |   |   0.wav
      |   ...
      |   |   N.wav
      |   +-- emotion
      |   |   +-- intended_1.dat
      |   |   +-- intended_1_[1D/2D].csv
      |   |   +-- intended_1_[1D/2D]_splices_Xsecs.csv
      |   +-- text
      |   |   +-- subtitle.srt
      |   |   +-- text.csv
      |   |   +-- text_splices_Xsecs.csv
      |   +-- video_splices_Xsecs
      |   |   0.mp4
      |   ...
      |   |   N.mp4
      ...
      
  3. (Optional) Transform audio to instrumental piano audio

    • Run: python audio2piano.py

      More info, needs Python 2.7

  4. Save spliced data in Python's npz format

    • Run: python splices2npz.py
    • Run after full video has been spliced accordingly
    • Full: 7 annotated music videos divided into splices of S seconds stored in data_test/

    Dataset

    * Test: Single *.avi* or *.mp4* file in *data_test/*
  5. Results will be a train and test dataset with the npz extension in the same root directory containing the data folders

DEAP

  1. Download dataset (need to sign EULA form):
    • Train data:
      • Choose a video option: highlights (1 minute videos) or raw video (original music videos of varying lengths)
      • Convert $DEAP_DATA/Video/highlights/*.wmv files to mp4
      • Copy videos to ./data/deap/mp4/
      • Open $DEAP_DATA/metadata_xls/participatn_ratings.XLS, save as $DEAP_DATA/metadata_xls/participatn_ratings.CSV and copy it to ./data/deap/
    • Test data (same for highlights or raw video):
      • Extract the first 11 seconds of each train video
      • Copy it in ./data/deap/test_data/
    • The final directory structure should be as follow:
      .data/deap/
      +-- mp4
      |   +-- 1.mp4
      |   +-- 2.mp4
      |   ...
      +-- participatn_ratings.csv
      +-- test_data
      |   +-- 1.mp4
      |   +-- 2.mp4
      |   ...
      ...
      
  2. Get average of emotion scores
    • Run: python deap_1_average_emotion_scores.py
  3. Splice video, audio, emotion and dummy text files

    Dummy text is necessary in order to ensure compatibility with the COGNIMUSE script

    • Run: python deap_2_video2splice.py
  4. (Optional) Transform audio to instrumental piano audio
    • Run: python deap_3_audio2piano.py
  5. Save spliced data in Python's npz format
    • Run: python deap_4_splices2npz.py

Acknowledgement

Please star or fork if this code was useful for you. If you use it in a paper, please cite as:

@software{gwena_cunha_2020_3910918,
  author       = {Gwenaelle Cunha Sergio},
  title        = {{gcunhase/AnnotatedMV-PreProcessing: Pre-Processing 
                   of Annotated Music Video Corpora (COGNIMUSE and
                   DEAP)}},
  month        = jun,
  year         = 2020,
  publisher    = {Zenodo},
  version      = {v2.0},
  doi          = {10.5281/zenodo.3910918},
  url          = {https://doi.org/10.5281/zenodo.3910918}
}

If you use the COGNIMUSE database:

@article{zlatintsi2017cognimuse,
  title={COGNIMUSE: A multimodal video database annotated with saliency, events, semantics and emotion with application to summarization},
  author={Zlatintsi, Athanasia and Koutras, Petros and Evangelopoulos, Georgios and Malandrakis, Nikolaos and Efthymiou, Niki and Pastra, Katerina and Potamianos, Alexandros and Maragos, Petros},
  journal={EURASIP Journal on Image and Video Processing},
  volume={2017},
  number={1},
  pages={54},
  year={2017},
  publisher={Springer}
}

If you use the DEAP database:

@article{koelstra2011deap,
  title={Deap: A database for emotion analysis; using physiological signals},
  author={Koelstra, Sander and Muhl, Christian and Soleymani, Mohammad and Lee, Jong-Seok and Yazdani, Ashkan and Ebrahimi, Touradj and Pun, Thierry and Nijholt, Anton and Patras, Ioannis},
  journal={IEEE transactions on affective computing},
  volume={3},
  number={1},
  pages={18--31},
  year={2011},
  publisher={IEEE}
}