Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

add client object and example of two clients #158

Open
wants to merge 10 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 4 additions & 4 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -107,7 +107,7 @@ python3 -m mypy tests
Using the config file `mypy.ini`, you can suppress missing stub errors for external libraries.
You can ignore a library by adding two lines to the config file. For example, suppressing matplotlib would look like this:

```
```ini
[mypy-matplotlib.*]
ignore_missing_imports = True

Expand Down Expand Up @@ -171,11 +171,11 @@ Start a python terminal and try it out:
import geoengine as ge
from datetime import datetime

ge.initialize("https://nightly.peter.geoengine.io/api")
ge_client = ge.create_client("https://nightly.peter.geoengine.io/api")

time = datetime.strptime('2014-04-01T12:00:00.000Z', "%Y-%m-%dT%H:%M:%S.%f%z")

workflow = ge.workflow_by_id('4cdf1ffe-cb67-5de2-a1f3-3357ae0112bd')
workflow = ge_client.workflow_by_id('4cdf1ffe-cb67-5de2-a1f3-3357ae0112bd')

print(workflow.get_result_descriptor())

Expand All @@ -186,7 +186,7 @@ workflow.get_dataframe(ge.Bbox([-60.0, 5.0, 61.0, 6.0], [time, time]))

If the Geo Engine server requires authentication, you can set your credentials in the following ways:

1. in the initialize method: `ge.initialize("https://nightly.peter.geoengine.io/api", ("email", "password"))`
1. in the initialize method: `ge.create_client("https://nightly.peter.geoengine.io/api", ("email", "password"))`
2. as environment variables `export GEOENGINE_EMAIL="email"` and `export GEOENGINE_PASSWORD="password"`
3. in a .env file in the current working directory with the content:

Expand Down
1,122 changes: 1,095 additions & 27 deletions examples/add_public_raster_dataset.ipynb

Large diffs are not rendered by default.

64 changes: 34 additions & 30 deletions examples/add_public_vector_dataset.ipynb

Large diffs are not rendered by default.

32 changes: 17 additions & 15 deletions examples/colorizer.ipynb

Large diffs are not rendered by default.

38 changes: 26 additions & 12 deletions examples/interpolation.ipynb

Large diffs are not rendered by default.

232 changes: 129 additions & 103 deletions examples/layers.ipynb

Large diffs are not rendered by default.

41 changes: 21 additions & 20 deletions examples/ndvi_ports.ipynb

Large diffs are not rendered by default.

170 changes: 83 additions & 87 deletions examples/permissions.ipynb

Large diffs are not rendered by default.

42 changes: 22 additions & 20 deletions examples/plots.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -10,7 +10,7 @@
},
{
"cell_type": "code",
"execution_count": 1,
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
Expand All @@ -29,33 +29,34 @@
},
{
"cell_type": "code",
"execution_count": 2,
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"ge.initialize(\"http://localhost:3030/api\")"
"client = ge.create_client(\"http://localhost:3030/api\")"
]
},
{
"cell_type": "code",
"execution_count": 3,
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Server: http://localhost:3030/api\n",
"Session Id: 18fec623-6600-41af-b82b-24ccf47cb9f9"
"User Id: a5f4b68c-f766-4674-a38c-1557c0fff98f\n",
"Session Id: 94b8f705-d723-4079-a427-8aadcab31d3f\n",
"Session valid until: 2023-12-01T15:08:57.799Z"
]
},
"execution_count": 3,
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"session = ge.get_session()\n",
"session"
"client.get_session()"
]
},
{
Expand All @@ -68,7 +69,7 @@
},
{
"cell_type": "code",
"execution_count": 4,
"execution_count": 6,
"metadata": {},
"outputs": [
{
Expand All @@ -77,13 +78,13 @@
"80c1417d-b2fa-56bc-90cf-d9651ba8ec37"
]
},
"execution_count": 4,
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"workflow = ge.register_workflow({\n",
"workflow = client.workflow_register({\n",
"\t\"type\": \"Plot\",\n",
"\t\"operator\": {\n",
"\t\t\"type\": \"Histogram\",\n",
Expand All @@ -110,7 +111,7 @@
},
{
"cell_type": "code",
"execution_count": 5,
"execution_count": 7,
"metadata": {},
"outputs": [
{
Expand All @@ -119,7 +120,7 @@
"Plot Result"
]
},
"execution_count": 5,
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
Expand All @@ -138,19 +139,19 @@
},
{
"cell_type": "code",
"execution_count": 6,
"execution_count": 8,
"metadata": {},
"outputs": [
{
"data": {
"application/javascript": "const spec = {\"$schema\": \"https://vega.github.io/schema/vega-lite/v4.json\", \"data\": {\"values\": [{\"Frequency\": 11243, \"binEnd\": 13.7, \"binStart\": 1.0}, {\"Frequency\": 295370, \"binEnd\": 26.4, \"binStart\": 13.7}, {\"Frequency\": 66337, \"binEnd\": 39.099999999999994, \"binStart\": 26.4}, {\"Frequency\": 101637, \"binEnd\": 51.8, \"binStart\": 39.099999999999994}, {\"Frequency\": 144761, \"binEnd\": 64.5, \"binStart\": 51.8}, {\"Frequency\": 90730, \"binEnd\": 77.2, \"binStart\": 64.5}, {\"Frequency\": 90168, \"binEnd\": 89.9, \"binStart\": 77.2}, {\"Frequency\": 91465, \"binEnd\": 102.60000000000001, \"binStart\": 89.9}, {\"Frequency\": 75286, \"binEnd\": 115.30000000000001, \"binStart\": 102.60000000000001}, {\"Frequency\": 62159, \"binEnd\": 128.0, \"binStart\": 115.30000000000001}, {\"Frequency\": 66335, \"binEnd\": 140.7, \"binStart\": 128.0}, {\"Frequency\": 68688, \"binEnd\": 153.39999999999998, \"binStart\": 140.7}, {\"Frequency\": 66999, \"binEnd\": 166.09999999999997, \"binStart\": 153.39999999999998}, {\"Frequency\": 59499, \"binEnd\": 178.79999999999995, \"binStart\": 166.09999999999997}, {\"Frequency\": 64618, \"binEnd\": 191.49999999999994, \"binStart\": 178.79999999999995}, {\"Frequency\": 70166, \"binEnd\": 204.19999999999993, \"binStart\": 191.49999999999994}, {\"Frequency\": 65502, \"binEnd\": 216.89999999999992, \"binStart\": 204.19999999999993}, {\"Frequency\": 50421, \"binEnd\": 229.5999999999999, \"binStart\": 216.89999999999992}, {\"Frequency\": 29428, \"binEnd\": 242.2999999999999, \"binStart\": 229.5999999999999}, {\"Frequency\": 4908781, \"binEnd\": 254.9999999999999, \"binStart\": 242.2999999999999}]}, \"encoding\": {\"x\": {\"axis\": {\"title\": \"vegetation\"}, \"bin\": {\"binned\": true, \"step\": 12.7}, \"field\": \"binStart\"}, \"x2\": {\"field\": \"binEnd\"}, \"y\": {\"field\": \"Frequency\", \"type\": \"quantitative\"}}, \"mark\": \"bar\"};\nconst opt = {};\nconst type = \"vega-lite\";\nconst id = \"6683a7db-b092-477b-a13e-4a5822d5d52c\";\n\nconst output_area = this;\n\nrequire([\"jupyter-vega\"], function(vega) {\n const target = document.createElement(\"div\");\n target.id = id;\n target.className = \"vega-embed\";\n\n const style = document.createElement(\"style\");\n style.textContent = [\n \".vega-embed .error p {\",\n \" color: firebrick;\",\n \" font-size: 14px;\",\n \"}\",\n ].join(\"\\\\n\");\n\n // element is a jQuery wrapped DOM element inside the output area\n // see http://ipython.readthedocs.io/en/stable/api/generated/\\\n // IPython.display.html#IPython.display.Javascript.__init__\n element[0].appendChild(target);\n element[0].appendChild(style);\n\n vega.render(`#$6683a7db-b092-477b-a13e-4a5822d5d52c`, spec, type, opt, output_area);\n}, function (err) {\n if (err.requireType !== \"scripterror\") {\n throw(err);\n }\n});\n",
"application/javascript": "const spec = {\"$schema\": \"https://vega.github.io/schema/vega-lite/v4.json\", \"data\": {\"values\": [{\"Frequency\": 11243, \"binEnd\": 13.7, \"binStart\": 1.0}, {\"Frequency\": 295370, \"binEnd\": 26.4, \"binStart\": 13.7}, {\"Frequency\": 66337, \"binEnd\": 39.099999999999994, \"binStart\": 26.4}, {\"Frequency\": 101637, \"binEnd\": 51.8, \"binStart\": 39.099999999999994}, {\"Frequency\": 144761, \"binEnd\": 64.5, \"binStart\": 51.8}, {\"Frequency\": 90730, \"binEnd\": 77.2, \"binStart\": 64.5}, {\"Frequency\": 90168, \"binEnd\": 89.9, \"binStart\": 77.2}, {\"Frequency\": 91465, \"binEnd\": 102.60000000000001, \"binStart\": 89.9}, {\"Frequency\": 75286, \"binEnd\": 115.30000000000001, \"binStart\": 102.60000000000001}, {\"Frequency\": 62159, \"binEnd\": 128.0, \"binStart\": 115.30000000000001}, {\"Frequency\": 66335, \"binEnd\": 140.7, \"binStart\": 128.0}, {\"Frequency\": 68688, \"binEnd\": 153.39999999999998, \"binStart\": 140.7}, {\"Frequency\": 66999, \"binEnd\": 166.09999999999997, \"binStart\": 153.39999999999998}, {\"Frequency\": 59499, \"binEnd\": 178.79999999999995, \"binStart\": 166.09999999999997}, {\"Frequency\": 64618, \"binEnd\": 191.49999999999994, \"binStart\": 178.79999999999995}, {\"Frequency\": 70166, \"binEnd\": 204.19999999999993, \"binStart\": 191.49999999999994}, {\"Frequency\": 65502, \"binEnd\": 216.89999999999992, \"binStart\": 204.19999999999993}, {\"Frequency\": 50421, \"binEnd\": 229.5999999999999, \"binStart\": 216.89999999999992}, {\"Frequency\": 29428, \"binEnd\": 242.2999999999999, \"binStart\": 229.5999999999999}, {\"Frequency\": 4908781, \"binEnd\": 254.9999999999999, \"binStart\": 242.2999999999999}]}, \"encoding\": {\"x\": {\"axis\": {\"title\": \"vegetation\"}, \"bin\": {\"binned\": true, \"step\": 12.7}, \"field\": \"binStart\"}, \"x2\": {\"field\": \"binEnd\"}, \"y\": {\"field\": \"Frequency\", \"type\": \"quantitative\"}}, \"mark\": \"bar\"};\nconst opt = {};\nconst type = \"vega-lite\";\nconst id = \"b9f4719b-1b6b-4ad0-be3d-eba23571ccaf\";\n\nconst output_area = this;\n\nrequire([\"jupyter-vega\"], function(vega) {\n const target = document.createElement(\"div\");\n target.id = id;\n target.className = \"vega-embed\";\n\n const style = document.createElement(\"style\");\n style.textContent = [\n \".vega-embed .error p {\",\n \" color: firebrick;\",\n \" font-size: 14px;\",\n \"}\",\n ].join(\"\\\\n\");\n\n // element is a jQuery wrapped DOM element inside the output area\n // see http://ipython.readthedocs.io/en/stable/api/generated/\\\n // IPython.display.html#IPython.display.Javascript.__init__\n element[0].appendChild(target);\n element[0].appendChild(style);\n\n vega.render(`#$b9f4719b-1b6b-4ad0-be3d-eba23571ccaf`, spec, type, opt, output_area);\n}, function (err) {\n if (err.requireType !== \"scripterror\") {\n throw(err);\n }\n});\n",
"text/plain": [
"<vega.vegalite.VegaLite at 0x7f2f9317f970>"
"<vega.vegalite.VegaLite at 0x7fa79886d960>"
]
},
"execution_count": 6,
"execution_count": 8,
"metadata": {
"jupyter-vega": "#6683a7db-b092-477b-a13e-4a5822d5d52c"
"jupyter-vega": "#b9f4719b-1b6b-4ad0-be3d-eba23571ccaf"
},
"output_type": "execute_result"
}
Expand All @@ -159,7 +160,8 @@
"time = datetime.strptime(\n",
" '2014-04-01T12:00:00.000Z', \"%Y-%m-%dT%H:%M:%S.%f%z\")\n",
"\n",
"workflow.plot_chart(\n",
"client.workflow_plot_chart(\n",
" workflow,\n",
" ge.QueryRectangle(\n",
" ge.BoundingBox2D(-180.0, -90.0, 180.0, 90.0),\n",
" ge.TimeInterval(time, time),\n",
Expand All @@ -185,7 +187,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.6"
"version": "3.10.12"
},
"vscode": {
"interpreter": {
Expand Down
Loading