Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

c #6658

Draft
wants to merge 1 commit into
base: master
Choose a base branch
from
Draft

c #6658

Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -947,6 +947,118 @@ def test_same_column_name(self) -> None:
assert result.column_values[3].attribute_name == "tags[foo]"
assert result.column_values[3].results[0].val_str == "five"

def test_floats_calculations(self) -> None:
spans_storage = get_storage(StorageKey("eap_spans"))
start = BASE_TIME
messages = [
{
"is_segment": False,
"retention_days": 90,
"tags": {},
"sentry_tags": {"status": "success"},
"measurements": {"client_sample_rate": {"value": 0.1}},
"event_id": "df1626f2c20249368d32cbc7bedc58b6",
"organization_id": 1,
"project_id": 1,
"trace_id": "724cb5bc3e9843e39dba73c7ec2909ab",
"span_id": "3a3ff57148b14923",
"parent_span_id": "87f08db2b78848c7",
"segment_id": "b6684d253c934ea3",
"group_raw": "30cff40b57554d8a",
"profile_id": "1f2e11173706458f9010599631234fc4",
"start_timestamp_ms": int(start.timestamp()) * 1000
- int(random.gauss(1000, 200)),
"start_timestamp_precise": start.timestamp(),
"end_timestamp_precise": start.timestamp() + 1,
"received": 1721319572.877828,
"duration_ms": 152,
"exclusive_time_ms": 0.228,
"description": "foo",
"ingest_in_eap": True,
},
{
"is_segment": False,
"retention_days": 90,
"tags": {},
"sentry_tags": {"status": "success"},
"measurements": {"client_sample_rate": {"value": 0.85}},
"event_id": "9ca81e2a30f94b22b1a8fd318e69e49e",
"organization_id": 1,
"project_id": 1,
"trace_id": "b7c9905686464d8d89e7d2aa95b5291a",
"span_id": "49ea9f85b8d94f87",
"parent_span_id": "4dcdde0710254636",
"segment_id": "d433c990ed9343e3",
"group_raw": "90c542ffb67b4629",
"profile_id": "16e664cce531405bae63834adc6aee80",
"start_timestamp_ms": int(start.timestamp()) * 1000
- int(random.gauss(1000, 200)),
"start_timestamp_precise": start.timestamp(),
"end_timestamp_precise": start.timestamp() + 1,
"received": 1721319572.877828,
"duration_ms": 152,
"exclusive_time_ms": 0.228,
"description": "bar",
"ingest_in_eap": True,
},
]
write_raw_unprocessed_events(spans_storage, messages) # type: ignore
ts = Timestamp(seconds=int(BASE_TIME.timestamp()))
hour_ago = Timestamp(seconds=int((BASE_TIME - timedelta(hours=1)).timestamp()))
err_req = {
"meta": {
"organizationId": 1,
"referrer": "api.organization-events",
"projectIds": [1],
"startTimestamp": hour_ago.ToJsonString(),
"endTimestamp": ts.ToJsonString(),
},
"columns": [
{
"aggregation": {
"aggregate": "FUNCTION_AVERAGE",
"key": {"type": "TYPE_FLOAT", "name": "sentry.sampling_factor"},
"label": "avg_sample(sampling_rate)",
"extrapolationMode": "EXTRAPOLATION_MODE_NONE",
},
"label": "avg_sample(sampling_rate)",
},
{
"aggregation": {
"aggregate": "FUNCTION_MIN",
"key": {"type": "TYPE_FLOAT", "name": "sentry.sampling_factor"},
"label": "min(sampling_rate)",
"extrapolationMode": "EXTRAPOLATION_MODE_SAMPLE_WEIGHTED",
},
"label": "min(sampling_rate)",
},
],
"limit": 101,
}
err_msg = ParseDict(err_req, TraceItemTableRequest())
result = EndpointTraceItemTable().execute(err_msg)
# this passes
assert result.column_values == [
TraceItemColumnValues(
attribute_name="avg_sample(sampling_rate)",
results=[
AttributeValue(val_float=0.475),
],
),
TraceItemColumnValues(
attribute_name="min(sampling_rate)",
results=[
AttributeValue(val_float=0.1),
],
),
]
# these error
# assert result.column_values[0].attribute_name == "avg_sample(sampling_rate)"
# assert result.column_values[0].results[0].val_float == 0.475
#
# assert result.column_values[1].attribute_name == "min(sampling_rate)"
# assert result.column_values[1].results[0].val_float == 0.1


class TestUtils:
def test_apply_labels_to_columns(self) -> None:
Expand Down
Loading