-
Notifications
You must be signed in to change notification settings - Fork 10.2k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
ggml-ci
- Loading branch information
Showing
7 changed files
with
212 additions
and
178 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,71 @@ | ||
#include "llama-hparams.h" | ||
|
||
#include "ggml.h" | ||
|
||
uint32_t llama_hparams::n_head(uint32_t il) const { | ||
if (il < n_layer) { | ||
return n_head_arr[il]; | ||
} | ||
|
||
GGML_ABORT("fatal error"); | ||
} | ||
|
||
uint32_t llama_hparams::n_head_kv(uint32_t il) const { | ||
if (il < n_layer) { | ||
return n_head_kv_arr[il]; | ||
} | ||
|
||
GGML_ABORT("fatal error"); | ||
} | ||
|
||
uint32_t llama_hparams::n_ff(uint32_t il) const { | ||
if (il < n_layer) { | ||
return n_ff_arr[il]; | ||
} | ||
|
||
GGML_ABORT("fatal error"); | ||
} | ||
|
||
uint32_t llama_hparams::n_gqa(uint32_t il) const { | ||
const uint32_t n_head = this->n_head(il); | ||
const uint32_t n_head_kv = this->n_head_kv(il); | ||
|
||
if (n_head_kv == 0) { | ||
return 0; | ||
} | ||
|
||
return n_head/n_head_kv; | ||
} | ||
|
||
uint32_t llama_hparams::n_embd_k_gqa(uint32_t il) const { | ||
const uint32_t n_head_kv = this->n_head_kv(il); | ||
|
||
return n_embd_head_k * n_head_kv; | ||
} | ||
|
||
uint32_t llama_hparams::n_embd_v_gqa(uint32_t il) const { | ||
const uint32_t n_head_kv = this->n_head_kv(il); | ||
|
||
return n_embd_head_v * n_head_kv; | ||
} | ||
|
||
uint32_t llama_hparams::n_embd_k_s() const { | ||
if (wkv_head_size != 0) { | ||
// for RWKV models | ||
return 2 * n_embd; | ||
} | ||
|
||
// TODO: maybe support other convolution strides than 1 | ||
// NOTE: since the first column of the conv_state is shifted out each time, it's not actually needed | ||
return (ssm_d_conv > 0 ? ssm_d_conv - 1 : 0) * ssm_d_inner; | ||
} | ||
|
||
uint32_t llama_hparams::n_embd_v_s() const { | ||
if (wkv_head_size != 0) { | ||
// corresponds to RWKV's wkv_states size | ||
return n_embd * wkv_head_size; | ||
} | ||
|
||
// corresponds to Mamba's ssm_states size | ||
return ssm_d_state * ssm_d_inner; | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,131 @@ | ||
#pragma once | ||
|
||
#include "llama.h" | ||
|
||
#include <array> | ||
|
||
// bump if necessary | ||
#define LLAMA_MAX_LAYERS 512 | ||
#define LLAMA_MAX_EXPERTS 160 // DeepSeekV2 | ||
|
||
struct llama_hparams_posnet { | ||
uint32_t n_embd; | ||
uint32_t n_layer; | ||
}; | ||
|
||
struct llama_hparams_convnext { | ||
uint32_t n_embd; | ||
uint32_t n_layer; | ||
}; | ||
|
||
struct llama_hparams { | ||
bool vocab_only; | ||
bool rope_finetuned; | ||
bool use_par_res; | ||
bool swin_norm; | ||
|
||
uint32_t n_vocab = 0; | ||
uint32_t n_ctx_train; // context size the model was trained on | ||
uint32_t n_embd; | ||
uint32_t n_embd_features = 0; | ||
uint32_t n_layer; | ||
uint32_t n_rot; | ||
uint32_t n_swa = 0; // sliding window attention (SWA) | ||
uint32_t n_embd_head_k; // dimension of keys (d_k). d_q is assumed to be the same, but there are n_head q heads, and only n_head_kv k-v heads | ||
uint32_t n_embd_head_v; // dimension of values (d_v) aka n_embd_head | ||
uint32_t n_expert = 0; | ||
uint32_t n_expert_used = 0; | ||
uint32_t n_vocab_type = 0; // for BERT-style token types | ||
uint32_t n_rel_attn_bkts = 0; | ||
|
||
// for WavTokenizer | ||
struct llama_hparams_posnet posnet; | ||
struct llama_hparams_convnext convnext; | ||
|
||
std::array<uint32_t, LLAMA_MAX_LAYERS> n_head_arr; | ||
std::array<uint32_t, LLAMA_MAX_LAYERS> n_head_kv_arr; | ||
std::array<uint32_t, LLAMA_MAX_LAYERS> n_ff_arr; | ||
|
||
uint32_t n_layer_dense_lead = 0; | ||
uint32_t n_lora_q = 0; | ||
uint32_t n_lora_kv = 0; | ||
uint32_t n_ff_exp = 0; | ||
uint32_t n_ff_shexp = 0; | ||
uint32_t n_expert_shared = 0; | ||
uint32_t n_norm_groups = 0; | ||
|
||
float expert_weights_scale = 0.0; | ||
|
||
float f_norm_eps; | ||
float f_norm_rms_eps; | ||
float f_norm_group_eps; | ||
|
||
float f_attn_logit_softcapping = 50.0f; | ||
float f_final_logit_softcapping = 30.0f; | ||
|
||
// for RWKV | ||
uint32_t rescale_every_n_layers = 0; | ||
uint32_t time_mix_extra_dim = 0; | ||
uint32_t time_decay_extra_dim = 0; | ||
uint32_t wkv_head_size = 0; | ||
|
||
float rope_attn_factor = 1.0f; | ||
float rope_freq_base_train; | ||
float rope_freq_scale_train; | ||
uint32_t n_ctx_orig_yarn; | ||
float rope_yarn_log_mul; | ||
int rope_sections[4]; // TODO: actually this should be std::array (I was wrong) | ||
|
||
// for State Space Models | ||
uint32_t ssm_d_conv = 0; | ||
uint32_t ssm_d_inner = 0; | ||
uint32_t ssm_d_state = 0; | ||
uint32_t ssm_dt_rank = 0; | ||
|
||
bool ssm_dt_b_c_rms = false; | ||
|
||
float f_clamp_kqv = 0.0f; | ||
float f_max_alibi_bias = 0.0f; | ||
float f_logit_scale = 0.0f; | ||
|
||
// Additional scale factors (Granite/Granite MoE) | ||
float f_residual_scale = 0.0f; | ||
float f_embedding_scale = 0.0f; | ||
float f_attention_scale = 0.0f; | ||
|
||
bool causal_attn = true; | ||
bool use_alibi = false; | ||
bool attn_soft_cap = false; | ||
|
||
// needed by encoder-decoder models (e.g. T5, FLAN-T5) | ||
// ref: https://github.com/ggerganov/llama.cpp/pull/8141 | ||
llama_token dec_start_token_id = LLAMA_TOKEN_NULL; | ||
|
||
enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_NONE; | ||
enum llama_rope_type rope_type = LLAMA_ROPE_TYPE_NONE; | ||
enum llama_rope_scaling_type rope_scaling_type_train = LLAMA_ROPE_SCALING_TYPE_NONE; | ||
|
||
uint32_t n_head(uint32_t il = 0) const; | ||
|
||
uint32_t n_head_kv(uint32_t il = 0) const; | ||
|
||
uint32_t n_ff(uint32_t il = 0) const; | ||
|
||
uint32_t n_gqa(uint32_t il = 0) const; | ||
|
||
// dimension of key embeddings across all k-v heads | ||
uint32_t n_embd_k_gqa(uint32_t il = 0) const; | ||
|
||
// dimension of value embeddings across all k-v heads | ||
uint32_t n_embd_v_gqa(uint32_t il = 0) const; | ||
|
||
// dimension of the rolling state embeddings | ||
// corresponds to Mamba's conv_states size or RWKV's token_shift states size | ||
uint32_t n_embd_k_s() const; | ||
|
||
// dimension of the recurrent state embeddings | ||
uint32_t n_embd_v_s() const; | ||
}; | ||
|
||
static_assert(std::is_trivially_copyable<llama_hparams>::value, "llama_hparams must be trivially copyable"); | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.