-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_gan.py
280 lines (220 loc) · 9.5 KB
/
train_gan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
import warnings
warnings.filterwarnings("ignore")
import argparse
import os
import pdb
import torch
import logging
import numpy as np
import diversity as div
from torch import nn, optim
from torch.utils import data
from torch.nn import functional as F
from data_utils import *
from vis_tools import *
from utils.trajectory_loader import PushDataset
from models.image_autoencoder import Encoder
from models.gan import Decoder, Discriminator
from torchvision.utils import save_image
from time import time
from control_evaluation import fetch_push_control_evaluation
from torch.optim.lr_scheduler import StepLR
from argparse import ArgumentParser, ArgumentTypeError
from utils.cli_arguments.common_arguments import add_common_arguments
from utils.argparse_util import override_dotmap
from utils.file import make_paths_absolute
def denorm(tensor):
return ((tensor + 1.0) / 2.0) * 255.0
def norm(image):
return (image / 255.0 - 0.5) * 2.0
def train(config):
def diverse_sampling(code):
N, C = code.size(0), code.size(1)
noise = torch.FloatTensor(N, num_sample, noise_dim).uniform_().to(gpu_id)
code = (code[:, None, :]).expand(-1, num_sample, -1)
code = torch.cat([code, noise], dim=2)
return code, noise
# Configurations and Hyperparameters
random_seed = config.random_seed
lr_rate = config.training.gan.learning_rate
num_epochs = config.training.gan.num_epochs
num_sample = config.training.gan.num_sample
noise_dim = config.training.gan.noise_dim
report_feq = config.training.gan.report_feq
batch_size = config.training.gan.batch_size
# Number of discriminator steps per generator step
discrim_steps_per_gen = config.training.gan.discrim_steps_per_gen
# Number of training stages
epochs_per_stage = config.training.gan.epochs_per_stage
gpu_id = torch.device(config.gpu_id if torch.cuda.is_available() else "cpu")
# Random Initialization
torch.manual_seed(random_seed)
np.random.seed(random_seed)
display = visualizer(port=config.log_port)
# Dataloader
dataset = PushDataset(config.train_data_path, seq_length=config.trajectory_length)
loader = data.DataLoader(dataset, batch_size=batch_size, shuffle=True)
# Use pretrained image encoder
encoder = torch.load(config.image_encoder_model_path).to(gpu_id)
encoder.eval()
# Pretrained forward model for evaluation
fwd_model_encoder = torch.load(
config.forward_model_encoder_path, map_location=gpu_id
)
fwd_model_decoder = torch.load(
config.forward_model_decoder_path, map_location=gpu_id
)
fwd_model_encoder.eval()
fwd_model_decoder.eval()
# GAN Components
decoder = Decoder(noise_dim=noise_dim).to(gpu_id)
discriminator = Discriminator().to(gpu_id)
decoder.weight_init(mean=0.0, std=0.02)
discriminator.weight_init(mean=0.0, std=0.02)
# Initialize Loss
l1, mse, bce = nn.L1Loss(), nn.MSELoss(), nn.BCELoss()
# Initialize Optimizer
G_optimizer = optim.Adam(
[{"params": decoder.parameters()}, {"params": encoder.parameters()}],
lr=lr_rate,
betas=(0.5, 0.999),
)
D_optimizer = optim.Adam(discriminator.parameters(), lr=lr_rate, betas=(0.5, 0.999))
scheduler = StepLR(G_optimizer, step_size=epochs_per_stage, gamma=0.9)
min_pred_error = np.inf
for epoch in range(num_epochs):
D_loss_sum, G_loss_sum, pair_div_loss_sum = 0, 0, 0
discriminator.train()
decoder.train()
for i, inputs in enumerate(loader):
########## Inputs ########
images, states, actions, goal = inputs
images, states, actions, goal = (
images.float().to(gpu_id),
states.float().to(gpu_id),
actions.float().to(gpu_id),
goal.float().to(gpu_id),
)
######## Unpack trajectories ########
state_cur, state_target = torch.split(
images, split_size_or_sections=[dataset.seq_length - 1, 1], dim=1
)
state_cur = state_cur.reshape(-1, *(state_cur.size()[2:]))
state_target = torch.repeat_interleave(
state_target.squeeze(dim=1), repeats=dataset.seq_length - 1, dim=0
)
actions = actions[:, :-1].reshape(-1, actions.size()[-1])
######## Ground truth copies repeated by number samples ########
action_unsqueeze = torch.repeat_interleave(
actions, repeats=num_sample, dim=0
)
state_cur_unsqueeze = torch.repeat_interleave(
state_cur, repeats=num_sample, dim=0
)
state_target_unsqueeze = torch.repeat_interleave(
state_target, repeats=num_sample, dim=0
)
########## Encode Images ########
state_codes = encoder(state_cur).detach()
target_codes = encoder(state_target).detach()
codes = torch.cat([state_codes, target_codes], dim=1).squeeze()
codes_unsqueeze = torch.repeat_interleave(codes, repeats=num_sample, dim=0)
########## diverse noise sampling ########
diverse_codes, noises = diverse_sampling(codes)
diverse_codes, noises = (
diverse_codes[..., None, None],
noises[..., None, None],
)
action_hat = decoder(diverse_codes.view(-1, diverse_codes.size(2)))
################## USEFUL CONSTANTS ##################
FLAT_BATCH_SIZE = batch_size * (dataset.seq_length - 1)
DIV_BATCH_SIZE = num_sample * FLAT_BATCH_SIZE
################## Train Discriminator ##################
for _ in range(discrim_steps_per_gen):
D_loss = nn.BCEWithLogitsLoss()(
torch.squeeze(discriminator(action_unsqueeze, codes_unsqueeze)),
torch.ones(DIV_BATCH_SIZE).to(gpu_id),
) + nn.BCEWithLogitsLoss()(
torch.squeeze(discriminator(action_hat, codes_unsqueeze)),
torch.zeros(DIV_BATCH_SIZE).to(gpu_id),
)
D_optimizer.zero_grad()
D_loss.backward(retain_graph=True)
D_optimizer.step()
########## G Loss ##########
G_loss = nn.BCEWithLogitsLoss()(
torch.squeeze(discriminator(action_hat, codes_unsqueeze)),
torch.ones(DIV_BATCH_SIZE).to(gpu_id),
)
########## Div Loss ##########
pair_div_loss = div.compute_pairwise_divergence(
action_hat.view(FLAT_BATCH_SIZE, num_sample, -1),
noises.squeeze(3).squeeze(3),
)
total_loss = (
G_loss + config.training.gan.pairwise_div_factor * pair_div_loss
)
G_optimizer.zero_grad()
total_loss.backward()
G_optimizer.step()
D_loss_sum += D_loss.cpu().data.numpy()
G_loss_sum += G_loss.cpu().data.numpy()
pair_div_loss_sum += pair_div_loss.cpu().data.numpy()
D_loss_avg = D_loss_sum / len(loader)
G_loss_avg = G_loss_sum / len(loader)
pair_div_loss_avg = pair_div_loss_sum / len(loader)
##########################################
# Evaluation
##########################################
# FIXME: This is currently evaluating on the training set. Generate new trajectories
# avg_action_error, avg_image_loss = fetch_push_control_evaluation(
# encoder, fwd_model_encoder, fwd_model_decoder, decoder, dataset, config
# )
##########################################
# Logging metrics
##########################################
logging.info(
"{}, D: {:4f}, G: {:4f}, div: {:4f}".format(
epoch,
D_loss_avg,
G_loss_avg,
pair_div_loss_avg,
# avg_action_error,
# avg_image_loss,
)
)
display.plot("gan", "discriminator", "GAN Loss", epoch, D_loss_avg)
display.plot("gan", "generator", "GAN Loss", epoch, G_loss_avg)
display.plot(
"pairwise_div", "loss", "Pairwise Divergence Loss", epoch, pair_div_loss_avg
)
# display.plot(
# "avg_action_error", "error", "Average Action Error", epoch, avg_action_error
# )
# display.plot(
# "avg_image_loss", "error", "Average Image Loss", epoch, avg_image_loss
# )
if epoch % epochs_per_stage == epochs_per_stage - 1:
if not os.path.exists(config.gan_save_path):
os.makedirs(config.gan_save_path)
torch.save(
discriminator,
os.path.join(
config.gan_save_path, "gan_discriminator_{}.pt".format(str(epoch))
),
)
torch.save(
decoder,
os.path.join(
config.gan_save_path, "gan_decoder_{}.pt".format(str(epoch))
),
)
if __name__ == "__main__":
parser = ArgumentParser(description="Interact with your training script")
parser = add_common_arguments(parser)
args = parser.parse_args()
# Creates composite config from config file and CLI arguments
config = override_dotmap(args, "config_file")
# Converts all filepaths in keys ending with "_path" from relative to absolute filepath
config = make_paths_absolute(os.getcwd(), config, log_not_exist=True)
train(config)