This is the repository for Saumya Shah and Matthew Goodman's ESE 650 Final Project (2020).
Credit to Lingzhi Zhang and Andong Cao for sharing their code.
@misc{zhang2019neural,
title={Neural Embedding for Physical Manipulations},
author={Lingzhi Zhang and Andong Cao and Rui Li and Jianbo Shi},
year={2019},
eprint={1907.06143},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
Credit to Tianhong Dai for his implementation of HER in OpenAI Gym robotics environments. https://github.com/TianhongDai/hindsight-experience-replay
Download Tianhong Dai's pretrained HER models from: https://drive.google.com/open?id=18MEEwweR8Ad1t1yxgTwI1VYmIsVPttXk
mkdir models/her_pretrained/FetchPush-v1
mv model.pt models/her_pretrained/FetchPush-v1
Argument documentation found with python generate_trajectories.py -h
To generate trajectories with default arguments (1 file, 1000 trajectories for file, saved to /data):
python generate_trajectories.py
Semi-random forward goal trajectories. Object is placed, goal then placed in pi/3 radius in front of object.
python generate_trajectories.py --trajectory-length 8 --num_trajectory_per_file 1000 --filename_start_idx 1 --num_files 20 --outdir data/forward_inline/train --image-shape 128 128 --simplify-task
Inline goal trajectories:
python generate_trajectories.py --trajectory-length 8 --num_trajectory_per_file 1000 --filename_start_idx 1 --num_files 20 --outdir data/forward_inline/train --image-shape 128 128 --simplify-task --goal-inline
To view an individual trajectory:
python -m utils.trajectory_loader _path_to_data_
python train_forward_model.py --trajectory-length 8 --train-data-path forward_inline_data/train --gpu-id 2 --log-port 8081 --forward-save-path models/inline_task_forward
python train_gan.py --trajectory-length 8 --train-data-path forward_inline_data/train --evaluation-data-path forward_inline_data/eval --gpu-id 2 --log-port 8081 --gan-save-path models/inline_task_gan
https://drive.google.com/file/d/1QJucw3DEFHWvWO7DGr6RDaVVHSt_Dl6e/view