-
Notifications
You must be signed in to change notification settings - Fork 175
feat: Voronovskaja-type formula for the Bézier variant of the Bernstein operators #1444
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
base: main
Are you sure you want to change the base?
Changes from all commits
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
| Original file line number | Diff line number | Diff line change | ||||
|---|---|---|---|---|---|---|
| @@ -0,0 +1,113 @@ | ||||||
| /- | ||||||
| Copyright 2025 The Formal Conjectures Authors. | ||||||
|
|
||||||
| Licensed under the Apache License, Version 2.0 (the "License"); | ||||||
| you may not use this file except in compliance with the License. | ||||||
| You may obtain a copy of the License at | ||||||
|
|
||||||
| https://www.apache.org/licenses/LICENSE-2.0 | ||||||
|
|
||||||
| Unless required by applicable law or agreed to in writing, software | ||||||
| distributed under the License is distributed on an "AS IS" BASIS, | ||||||
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||||||
| See the License for the specific language governing permissions and | ||||||
| limitations under the License. | ||||||
| -/ | ||||||
|
|
||||||
| import FormalConjectures.Util.ProblemImports | ||||||
|
|
||||||
| open Topology Filter Real unitInterval Polynomial | ||||||
|
|
||||||
| /-! | ||||||
| # Voronovskaja-type Formula for the Bezier Variant of the Bernstein Operators | ||||||
|
|
||||||
| *References:* | ||||||
|
|
||||||
| * [A problem in Constructive theory of functions, Szopol 2010](https://www.math.bas.bg/mathmod/Proceedings_CTF/CTF-2010/files_CTF-2010/Open_problems.pdf?utm_source=perplexity) | ||||||
|
|
||||||
| The Bézier-type Bernstein operators $B_{n,\alpha}$ for $\alpha > 0$ are defined for | ||||||
| $f : [0,1] \to \mathbb{R}$ by | ||||||
| \[ | ||||||
| (B_{n,\alpha} f)(x) | ||||||
| = \sum_{k=0}^n f\!\left(\frac{k}{n}\right) | ||||||
| \left( J_{n,k}(x)^{\alpha} - J_{n,k+1}(x)^{\alpha} \right), | ||||||
| \] | ||||||
| where | ||||||
| \[ | ||||||
| J_{n,k}(x) = \sum_{j=k}^n p_{n,j}(x), | ||||||
| \qquad | ||||||
| p_{n,j}(x) = \binom{n}{j} x^j(1-x)^{n-j}, | ||||||
| \] | ||||||
| and $J_{n,n+1}(x) = 0$. | ||||||
|
|
||||||
| In the classical case $\alpha = 1$, these operators reduce to the usual Bernstein operators. | ||||||
| For sufficiently smooth $f$, one has the classical Voronovskaja asymptotic formula | ||||||
| \[ | ||||||
| \lim_{n \to \infty} n\bigl( B_{n,1} f(x) - f(x) \bigr) | ||||||
| = \tfrac{1}{2} x(1-x) f''(x). | ||||||
| \] | ||||||
|
|
||||||
| ## Known Results | ||||||
| * For $\alpha = 1$, the asymptotics are completely understood. | ||||||
| * Numerical experiments indicate that for $\alpha \neq 1$ the quantity | ||||||
| \[ | ||||||
| \sqrt{n}\,\bigl( B_{n,\alpha} f(x) - f(x) \bigr) | ||||||
| \] | ||||||
| may converge to a non-zero limit. | ||||||
|
|
||||||
| ## The Problem | ||||||
| Determine the asymptotic behaviour of the Bézier-type Bernstein operators for $\alpha \neq 1$: | ||||||
| \textbf{Existence of the limit:} | ||||||
| Prove (or disprove) the existence of the limit | ||||||
| \[ | ||||||
| \lim_{n \to \infty} | ||||||
| \sqrt{n}\,\bigl( B_{n,\alpha} f(x) - f(x) \bigr), | ||||||
| \] | ||||||
| at least for functions $f$ that are twice differentiable at $x \in (0,1)$. | ||||||
| \item \textbf{Explicit form of the limit:} | ||||||
| If the limit exists, determine an explicit expression for it in terms of $f$, $x$, and $\alpha$. | ||||||
| -/ | ||||||
|
|
||||||
| /-- | ||||||
| Cumulative sum `J_{n,k}(x) = ∑_{j=k}^n p_{n,j}(x)` | ||||||
| -/ | ||||||
| noncomputable def bernsteinTail (n k : ℕ) : Polynomial ℝ := | ||||||
| ∑ j ∈ Finset.Icc k n, bernsteinPolynomial ℝ n j | ||||||
|
|
||||||
| /-- | ||||||
| Bézier–type Bernstein operator: | ||||||
| `(B_{n,α} f)(x) = ∑_{k=0}^n f(k/n) * (J_{n,k}(x)^α - J_{n,k+1}(x)^α)` | ||||||
|
Collaborator
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Same here |
||||||
| -/ | ||||||
| noncomputable def bezierBernstein (n : ℕ) (α : ℝ) (f : ℝ → ℝ) (x : ℝ) : ℝ := | ||||||
| ∑ k ∈ Finset.range (n+1), | ||||||
| f (k/n) * (((bernsteinTail n k).eval x) ^ α - ((bernsteinTail n k + 1).eval x) ^ α) | ||||||
|
|
||||||
| /-- | ||||||
| Classical Voronovskaja theorem (α = 1) | ||||||
|
|
||||||
| For smooth `f`, the limit: | ||||||
| n * (B_n f x - f x) → (1/2)*x*(1-x)*f''(x) | ||||||
|
Comment on lines
+86
to
+89
Collaborator
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Can you latex this? |
||||||
|
|
||||||
| This is already in the literature; here we state it. | ||||||
|
Comment on lines
+90
to
+91
Collaborator
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. No need to write this, the tag already contains this info
Suggested change
|
||||||
| -/ | ||||||
| @[category research solved, AMS 26 40 47] | ||||||
| theorem voronovskaja_theorem.bernstein_operators | ||||||
| (f : ℝ → ℝ) (x : ℝ) (hx : x ∈ I) : | ||||||
| let f'' : ℝ := iteratedDerivWithin 2 f I x | ||||||
| Tendsto (fun (n : ℕ) => n • (bezierBernstein n 1 f x - f x)) | ||||||
| atTop | ||||||
| (𝓝 ((1/2) * x * (1-x) * f'')) := by | ||||||
| sorry | ||||||
|
|
||||||
| /-- | ||||||
| Conjecture: Voronovskaja-type formula for Bézier-Bernstein operators | ||||||
| with shape parameter α ≠ 1. | ||||||
| -/ | ||||||
| @[category research open, AMS 26 40 47] | ||||||
| theorem voronovskaja_theorem.bezier_bernstein_operators | ||||||
| (α : ℝ) (hα : α ≠ 1) | ||||||
| (f : ℝ → ℝ) (x : ℝ) (hx : x ∈ I) | ||||||
| (x : ℝ)(hf : ContDiffAt ℝ 2 f x) : let f'' : ℝ := iteratedDerivWithin 2 f I x | ||||||
| ∃ L : ℝ, | ||||||
| Tendsto (fun n : ℕ => Real.sqrt n * (bezierBernstein n α f x - f x)) atTop (𝓝 L) := by | ||||||
| sorry | ||||||
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Can you put this at the end of the doc?