-
Notifications
You must be signed in to change notification settings - Fork 195
feat(Navier-Stokes): formalization of Navier–Stokes existence and smoothness #1457
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
base: main
Are you sure you want to change the base?
Changes from all commits
452204e
6c3482a
1a2f284
f0b3654
01af728
499ea04
576d81e
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
| Original file line number | Diff line number | Diff line change | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| @@ -0,0 +1,239 @@ | ||||||||||||||
| /- | ||||||||||||||
| Copyright 2025 The Formal Conjectures Authors. | ||||||||||||||
|
|
||||||||||||||
| Licensed under the Apache License, Version 2.0 (the "License"); | ||||||||||||||
| you may not use this file except in compliance with the License. | ||||||||||||||
| You may obtain a copy of the License at | ||||||||||||||
|
|
||||||||||||||
| https://www.apache.org/licenses/LICENSE-2.0 | ||||||||||||||
|
|
||||||||||||||
| Unless required by applicable law or agreed to in writing, software | ||||||||||||||
| distributed under the License is distributed on an "AS IS" BASIS, | ||||||||||||||
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||||||||||||||
| See the License for the specific language governing permissions and | ||||||||||||||
| limitations under the License. | ||||||||||||||
| -/ | ||||||||||||||
|
|
||||||||||||||
| import FormalConjectures.Util.ProblemImports | ||||||||||||||
|
|
||||||||||||||
| /-! | ||||||||||||||
| # Existence And Smoothness Of The Navier–Stokes Equation | ||||||||||||||
|
|
||||||||||||||
| This file formalizes the Clay Mathematics Institute millennium problem concerning | ||||||||||||||
| the existence and smoothness of solutions to the Navier-Stokes equations in three | ||||||||||||||
| spatial dimensions. While the definitions are generalized to arbitrary dimension n, | ||||||||||||||
| the millennium problem specifically concerns the case n = 3. | ||||||||||||||
|
|
||||||||||||||
| ## References | ||||||||||||||
| - [Wikipedia](https://en.wikipedia.org/wiki/Navier%E2%80%93Stokes_existence_and_smoothness) | ||||||||||||||
| - [Clay Mathematics Institute](https://www.claymath.org/wp-content/uploads/2022/06/navierstokes.pdf) | ||||||||||||||
|
|
||||||||||||||
| ## Main Theorems (Clay Millennium Problem for n = 3) | ||||||||||||||
|
|
||||||||||||||
| The Clay Millennium Problem asks for a proof of one of the following four statements: | ||||||||||||||
|
|
||||||||||||||
| - `navier_stokes_existence_and_smoothness_R3`: (A) Global existence on ℝ³ | ||||||||||||||
| - `navier_stokes_existence_and_smoothness_periodic`: (B) Global existence on ℝ³/ℤ³ | ||||||||||||||
| - `navier_stokes_breakdown_R3`: (C) Existence of breakdown scenario on ℝ³ | ||||||||||||||
| - `navier_stokes_breakdown_periodic`: (D) Existence of breakdown scenario on ℝ³/ℤ³ | ||||||||||||||
| -/ | ||||||||||||||
|
|
||||||||||||||
| open ContDiff Set InnerProductSpace MeasureTheory EuclideanGeometry | ||||||||||||||
|
|
||||||||||||||
| /-- | ||||||||||||||
| The divergence of a vector field `v : ℝⁿ → ℝⁿ` at point `x`, | ||||||||||||||
| computed as the trace of the Jacobian matrix. | ||||||||||||||
|
|
||||||||||||||
| In coordinates: div v = Σᵢ ∂vᵢ/∂xᵢ | ||||||||||||||
| -/ | ||||||||||||||
| noncomputable | ||||||||||||||
| def divergence {n : ℕ} (v : ℝ^n → ℝ^n) (x : ℝ^n) : ℝ := (fderiv ℝ v x).trace ℝ (ℝ^n) | ||||||||||||||
|
|
||||||||||||||
| notation "∇⬝" => divergence | ||||||||||||||
|
|
||||||||||||||
| /-- | ||||||||||||||
| A function `f : ℝⁿ → α` is periodic if it is periodic in each coordinate | ||||||||||||||
| with period 1, i.e., `f(x + eᵢ) = f(x)` for each unit vector `eᵢ`. | ||||||||||||||
| This captures functions on the n-torus ℝⁿ/ℤⁿ. | ||||||||||||||
| -/ | ||||||||||||||
| def IsPeriodic {α : Sort*} {n : ℕ} (f : ℝ^n → α) : Prop := | ||||||||||||||
| ∀ x i, f (x + EuclideanSpace.single i 1) = f x | ||||||||||||||
|
|
||||||||||||||
| /-- | ||||||||||||||
| Basic conditions on initial velocity field for the Navier-Stokes equations | ||||||||||||||
| in n-dimensional space. | ||||||||||||||
|
|
||||||||||||||
| The initial velocity must be: | ||||||||||||||
| - Divergence-free (incompressibility condition: ∇·v₀ = 0) | ||||||||||||||
| - Smooth (C^∞) | ||||||||||||||
|
|
||||||||||||||
| These conditions apply regardless of spatial dimension. | ||||||||||||||
| -/ | ||||||||||||||
| structure InitialVelocityCondition {n : ℕ} (v₀ : ℝ^n → ℝ^n) : Prop where | ||||||||||||||
| /-- The initial velocity field is divergence-free (equation 2). | ||||||||||||||
| This is the incompressibility constraint for the fluid. -/ | ||||||||||||||
| div_free : ∀ x, divergence v₀ x = 0 | ||||||||||||||
| /-- The initial velocity field is smooth (C^∞ in all variables) -/ | ||||||||||||||
| smooth : ContDiff ℝ ∞ v₀ | ||||||||||||||
|
|
||||||||||||||
| /-- | ||||||||||||||
| Initial velocity conditions for the Navier-Stokes problem on all of ℝⁿ. | ||||||||||||||
|
|
||||||||||||||
| In addition to being smooth and divergence-free, the velocity must decay | ||||||||||||||
| faster than any polynomial at spatial infinity (condition 4 in Fefferman's paper). | ||||||||||||||
|
|
||||||||||||||
| This condition ensures the velocity field has finite energy and reasonable | ||||||||||||||
| behavior as |x| → ∞. | ||||||||||||||
| -/ | ||||||||||||||
| structure InitialVelocityConditionRn {n : ℕ} (v₀ : ℝ^n → ℝ^n) : Prop | ||||||||||||||
| extends InitialVelocityCondition v₀ where | ||||||||||||||
| /-- All derivatives of v₀ decay faster than any polynomial (condition 4). | ||||||||||||||
|
|
||||||||||||||
| For any derivative order m and any decay rate K, there exists a constant C | ||||||||||||||
| such that |∂ᵐv₀(x)| ≤ C/(1+|x|)^K. -/ | ||||||||||||||
| decay : ∀ m : ℕ, ∀ K : ℝ, ∃ C : ℝ, ∀ x, ‖iteratedFDeriv ℝ m v₀ x‖ ≤ C / (1 + ‖x‖)^K | ||||||||||||||
|
|
||||||||||||||
| /-- | ||||||||||||||
| Initial velocity conditions for the periodic Navier-Stokes problem on ℝⁿ/ℤⁿ. | ||||||||||||||
|
|
||||||||||||||
| The velocity must be smooth, divergence-free, and periodic with period 1 | ||||||||||||||
| in each coordinate (condition 8 in Fefferman's paper). | ||||||||||||||
| -/ | ||||||||||||||
| structure InitialVelocityConditionPeriodic {n : ℕ} (v₀ : ℝ^n → ℝ^n) : Prop | ||||||||||||||
| extends InitialVelocityCondition v₀ where | ||||||||||||||
| /-- The initial velocity is periodic with period 1 in each direction (condition 8) -/ | ||||||||||||||
| periodic : IsPeriodic v₀ | ||||||||||||||
|
|
||||||||||||||
| /-- | ||||||||||||||
| Basic smoothness condition on external forcing term. | ||||||||||||||
|
|
||||||||||||||
| The force f(x,t) must be smooth (C^∞) in both space and time variables for t ≥ 0. | ||||||||||||||
| -/ | ||||||||||||||
| structure ForceCondition {n : ℕ} (f : ℝ^n → ℝ → ℝ^n) : Prop where | ||||||||||||||
| /-- The force is smooth on ℝⁿ × [0,∞) -/ | ||||||||||||||
| smooth : ContDiffOn ℝ ∞ (↿f) (Set.univ ×ˢ Set.Ici 0) | ||||||||||||||
|
|
||||||||||||||
| /-- | ||||||||||||||
| Force conditions for the Navier-Stokes problem on all of ℝⁿ. | ||||||||||||||
|
|
||||||||||||||
| The force must be smooth and decay faster than any polynomial | ||||||||||||||
| in both space and time (condition 5 in Fefferman's paper). | ||||||||||||||
| -/ | ||||||||||||||
| structure ForceConditionRn {n : ℕ} (f : ℝ^n → ℝ → ℝ^n) : Prop | ||||||||||||||
| extends ForceCondition f where | ||||||||||||||
| /-- All derivatives of f decay faster than any polynomial in space and time (condition 5). | ||||||||||||||
|
|
||||||||||||||
| For any derivative orders m and decay rate K, there exists C such that | ||||||||||||||
| |∂ᵐ_{x,t} f(x,t)| ≤ C/(1+|x|+t)^K for t > 0. | ||||||||||||||
| -/ | ||||||||||||||
| decay : ∀ m : ℕ, ∀ K : ℝ, ∃ C : ℝ, ∀ x, ∀ t > 0, | ||||||||||||||
| ‖iteratedFDeriv ℝ m (↿f) (x,t)‖ ≤ C / (1 + ‖x‖ + t)^K | ||||||||||||||
|
|
||||||||||||||
| /-- | ||||||||||||||
| Force conditions for the periodic Navier-Stokes problem on ℝⁿ/ℤⁿ. | ||||||||||||||
|
|
||||||||||||||
| The force must be smooth, periodic in space, and decay in time | ||||||||||||||
| (conditions 8-9 in Fefferman's paper). | ||||||||||||||
| -/ | ||||||||||||||
| structure ForceConditionPeriodic {n : ℕ} (f : ℝ^n → ℝ → ℝ^n) : Prop | ||||||||||||||
| extends ForceCondition f where | ||||||||||||||
| /-- The force is periodic in space with period 1 for all times (condition 8) -/ | ||||||||||||||
| periodic : ∀ t ≥ 0, IsPeriodic (f · t) | ||||||||||||||
| /-- All derivatives of f decay faster than any polynomial in time (condition 9). -/ | ||||||||||||||
| decay : ∀ m : ℕ, ∀ K : ℝ, ∃ C : ℝ, ∀ x, ∀ t > 0, | ||||||||||||||
| ‖iteratedFDeriv ℝ m (↿f) (x,t)‖ ≤ C / (1 + t)^K | ||||||||||||||
YaelDillies marked this conversation as resolved.
Show resolved
Hide resolved
|
||||||||||||||
|
|
||||||||||||||
| /-- | ||||||||||||||
| A solution (v, p) to the Navier-Stokes equations in n-dimensional space | ||||||||||||||
| with viscosity nu, initial velocity v₀, and external force f. | ||||||||||||||
|
|
||||||||||||||
| This structure captures the core requirements for a solution: | ||||||||||||||
| 1. The velocity and pressure satisfy the Navier-Stokes PDE (equation 1) | ||||||||||||||
| 2. The velocity remains divergence-free for all time (equation 2) | ||||||||||||||
| 3. The initial condition is satisfied (equation 3) | ||||||||||||||
| 4. The solution is smooth (C^∞) for all time t ≥ 0 (equations 6, 11) | ||||||||||||||
| -/ | ||||||||||||||
| structure NavierStokesExistenceAndSmoothness {n : ℕ} | ||||||||||||||
| (nu : ℝ) (v₀ : ℝ^n → ℝ^n) (f : ℝ^n → ℝ → ℝ^n) | ||||||||||||||
| (v : ℝ^n → ℝ → ℝ^n) (p : ℝ^n → ℝ → ℝ) : Prop where | ||||||||||||||
|
|
||||||||||||||
| /-- The Navier-Stokes equation (equation 1): | ||||||||||||||
| ∂v/∂t + (v·∇)v = ν∆v - ∇p + f -/ | ||||||||||||||
| navier_stokes : ∀ x, ∀ t > 0, | ||||||||||||||
| deriv (v x ·) t + fderiv ℝ (v · t) x (v x t) = nu • Δ (v · t) x - gradient (p · t) x + f x t | ||||||||||||||
|
Comment on lines
+160
to
+163
Collaborator
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Condition 1 is also stated for t = 0. Could you explain the discrepancy in a comment? |
||||||||||||||
|
|
||||||||||||||
| /-- Incompressibility constraint (equation 2): ∇·v = 0 for all x and t ≥ 0. -/ | ||||||||||||||
| div_free : ∀ x, ∀ t ≥ 0, ∇⬝ (v · t) x = 0 | ||||||||||||||
|
|
||||||||||||||
| /-- Initial condition (equation 3): v(x,0) = v₀(x) for all x. -/ | ||||||||||||||
| initial_condition : ∀ x, v x 0 = v₀ x | ||||||||||||||
|
|
||||||||||||||
| /-- The velocity field is smooth (C^∞) on ℝⁿ × [0,∞) (conditions 6, 11). -/ | ||||||||||||||
| velocity_smooth : ContDiffOn ℝ ∞ (↿v) (Set.univ ×ˢ Set.Ici 0) | ||||||||||||||
|
|
||||||||||||||
| /-- The pressure field is smooth (C^∞) on ℝⁿ × [0,∞) (conditions 6, 11) -/ | ||||||||||||||
| pressure_smooth : ContDiffOn ℝ ∞ (↿p) (Set.univ ×ˢ Set.Ici 0) | ||||||||||||||
|
|
||||||||||||||
| /-- | ||||||||||||||
| A solution to the Navier-Stokes equations on all of ℝⁿ with appropriate | ||||||||||||||
| decay and energy bounds. | ||||||||||||||
|
|
||||||||||||||
| In addition to the basic solution properties, we require: | ||||||||||||||
| - The velocity is square-integrable at each time (finite kinetic energy) | ||||||||||||||
| - The total energy remains bounded for all time (condition 7) | ||||||||||||||
| -/ | ||||||||||||||
| structure NavierStokesExistenceAndSmoothnessRn {n : ℕ} | ||||||||||||||
| (nu : ℝ) (v₀ : ℝ^n → ℝ^n) (f : ℝ^n → ℝ → ℝ^n) | ||||||||||||||
| (v : ℝ^n → ℝ → ℝ^n) (p : ℝ^n → ℝ → ℝ) : Prop | ||||||||||||||
| extends NavierStokesExistenceAndSmoothness nu v₀ f v p where | ||||||||||||||
|
|
||||||||||||||
| /-- The velocity is square-integrable at each time t ≥ 0. -/ | ||||||||||||||
|
Collaborator
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more.
Suggested change
|
||||||||||||||
| integrable : ∀ t ≥ 0, Integrable (‖v · t‖^2) | ||||||||||||||
|
|
||||||||||||||
| /-- The kinetic energy ∫|v(x,t)|²dx remains uniformly bounded for all time (condition 7). -/ | ||||||||||||||
| globally_bounded_energy : ∃ E, ∀ t ≥ 0, (∫ x : ℝ^n, ‖v x t‖^2) < E | ||||||||||||||
|
|
||||||||||||||
|
|
||||||||||||||
| /-- | ||||||||||||||
|
Comment on lines
+196
to
+197
Collaborator
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more.
Suggested change
|
||||||||||||||
| A solution to the Navier-Stokes equations on the n-torus ℝⁿ/ℤⁿ. | ||||||||||||||
|
|
||||||||||||||
| The velocity and pressure must be periodic with period 1 in each | ||||||||||||||
| spatial direction for all times (condition 10). | ||||||||||||||
| -/ | ||||||||||||||
| structure NavierStokesExistenceAndSmoothnessPeriodic {n : ℕ} | ||||||||||||||
| (nu : ℝ) (v₀ : ℝ^n → ℝ^n) (f : ℝ^n → ℝ → ℝ^n) | ||||||||||||||
| (v : ℝ^n → ℝ → ℝ^n) (p : ℝ^n → ℝ → ℝ) : Prop | ||||||||||||||
| extends NavierStokesExistenceAndSmoothness nu v₀ f v p where | ||||||||||||||
|
|
||||||||||||||
| /-- The velocity is periodic in space with period 1 for all times t ≥ 0 (condition 10). -/ | ||||||||||||||
| velocity_periodic : ∀ t ≥ 0, IsPeriodic (v · t) | ||||||||||||||
|
|
||||||||||||||
| /-- The pressure is periodic in space with period 1 for all times t ≥ 0 (condition 10). -/ | ||||||||||||||
| pressure_periodic : ∀ t ≥ 0, IsPeriodic (p · t) | ||||||||||||||
|
Comment on lines
+211
to
+212
Collaborator
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Technically, the periodicity of pressure isn't stated anywhere. Could you leave a comment to that effect?
Contributor
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Errata on page 6 says also |
||||||||||||||
|
|
||||||||||||||
|
|
||||||||||||||
| /-- (A) Existence and smoothness of Navier–Stokes solutions on ℝ³. -/ | ||||||||||||||
| @[category research open, AMS 35] | ||||||||||||||
| theorem navier_stokes_existence_and_smoothness_R3 (nu : ℝ) (hnu : nu > 0) | ||||||||||||||
| (v₀ : ℝ³ → ℝ³) (hv₀ : InitialVelocityConditionRn v₀) : | ||||||||||||||
|
Collaborator
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. The source uses
Suggested change
instead. Maybe you could do that so that |
||||||||||||||
| ∃ v p, NavierStokesExistenceAndSmoothnessRn (n:=3) nu v₀ (f:=0) v p := sorry | ||||||||||||||
|
Comment on lines
+218
to
+219
Collaborator
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more.
Suggested change
Same below |
||||||||||||||
|
|
||||||||||||||
| /-- (B) Existence and smoothness of Navier–Stokes solutions in ℝ³/ℤ³. -/ | ||||||||||||||
| @[category research open, AMS 35] | ||||||||||||||
| theorem navier_stokes_existence_and_smoothness_periodic (nu : ℝ) (hnu : nu > 0) | ||||||||||||||
| (v₀ : ℝ³ → ℝ³) (hv₀ : InitialVelocityConditionPeriodic v₀) : | ||||||||||||||
| ∃ v p, NavierStokesExistenceAndSmoothnessPeriodic (n:=3) nu v₀ (f:=0) v p := sorry | ||||||||||||||
|
|
||||||||||||||
| /-- (C) Breakdown of Navier–Stokes solutions on ℝ³. -/ | ||||||||||||||
| @[category research open, AMS 35] | ||||||||||||||
| theorem navier_stokes_breakdown_R3 (nu : ℝ) (hnu : nu > 0) : | ||||||||||||||
| ∃ (v₀ : ℝ³ → ℝ³) (f : ℝ³ → ℝ → ℝ³), | ||||||||||||||
| InitialVelocityConditionRn v₀ ∧ ForceConditionRn f ∧ | ||||||||||||||
| ¬(∃ v p, NavierStokesExistenceAndSmoothnessRn (n:=3) nu v₀ f v p) := sorry | ||||||||||||||
|
Comment on lines
+230
to
+232
Collaborator
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more.
Suggested change
maybe? |
||||||||||||||
|
|
||||||||||||||
| /-- (D) Breakdown of Navier–Stokes Solutions on ℝ³/ℤ³. -/ | ||||||||||||||
| @[category research open, AMS 35] | ||||||||||||||
| theorem navier_stokes_breakdown_periodic (nu : ℝ) (hnu : nu > 0) : | ||||||||||||||
| ∃ (v₀ : ℝ³ → ℝ³) (f : ℝ³ → ℝ → ℝ³), | ||||||||||||||
| InitialVelocityConditionPeriodic v₀ ∧ ForceConditionPeriodic f ∧ | ||||||||||||||
| ¬(∃ v p, NavierStokesExistenceAndSmoothnessPeriodic (n:=3) nu v₀ f v p) := sorry | ||||||||||||||
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
What about
instead? In both cases, the function has domain
R^n, soRnis a bit confusing as a way to distinguish