-
Notifications
You must be signed in to change notification settings - Fork 197
feat(ErdosProblems/1105): anti-Ramsey numbers for cycles and paths #1583
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
base: main
Are you sure you want to change the base?
Changes from all commits
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,97 @@ | ||
| /- | ||
| Copyright 2026 The Formal Conjectures Authors. | ||
| Licensed under the Apache License, Version 2.0 (the "License"); | ||
| you may not use this file except in compliance with the License. | ||
| You may obtain a copy of the License at | ||
| https://www.apache.org/licenses/LICENSE-2.0 | ||
| Unless required by applicable law or agreed to in writing, software | ||
| distributed under the License is distributed on an "AS IS" BASIS, | ||
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
| See the License for the specific language governing permissions and | ||
| limitations under the License. | ||
| -/ | ||
| import FormalConjectures.Util.ProblemImports | ||
| import FormalConjecturesForMathlib.Combinatorics.SimpleGraph.Coloring | ||
|
|
||
| /-! | ||
| # Erdős Problem 1105 | ||
| The anti-Ramsey number AR(n, G) is the maximum possible number of colours in which the edges of | ||
| Kₙ can be coloured without creating a rainbow copy of G (i.e. one in which all edges have | ||
| different colours). | ||
| ## Conjecture for Cycles | ||
| Let Cₖ be the cycle on k vertices. Is it true that | ||
| AR(n, Cₖ) = ((k-2)/2 + 1/(k-1)) n + O(1)? | ||
| ## Conjecture for Paths | ||
| Let Pₖ be the path on k vertices and ℓ = ⌊(k-1)/2⌋. If n ≥ k ≥ 5 then is AR(n, Pₖ) equal to | ||
| max(C(k-2, 2) + 1, C(ℓ-1, 2) + (ℓ-1)(n-ℓ+1) + ε) | ||
| where ε = 1 if k is odd and ε = 2 otherwise? | ||
| A conjecture of Erdős, Simonovits, and Sós [ESS75], who gave a simple proof that AR(n, C₃) = n-1. | ||
| Simonovits and Sós [SiSo84] published a proof that the claimed formula for AR(n, Pₖ) is true | ||
| for n ≥ ck² for some constant c > 0. | ||
| A proof of the formula for AR(n, Pₖ) for all n ≥ k ≥ 5 has been announced by Yuan [Yu21]. | ||
| *Reference:* [erdosproblems.com/1105](https://www.erdosproblems.com/1105) | ||
| -/ | ||
|
|
||
| namespace Erdos1105 | ||
|
|
||
| open SimpleGraph | ||
|
|
||
| def pathGraph (k : ℕ) : SimpleGraph (Fin k) := | ||
| SimpleGraph.fromRel fun i j => i.val + 1 = j.val | ||
|
|
||
| /-- The conjectured value for the anti-Ramsey number of cycles. | ||
| AR(n, Cₖ) ≈ ((k-2)/2 + 1/(k-1)) · n -/ | ||
| noncomputable def conjecturedARCycle (n k : ℕ) : ℝ := | ||
| ((k - 2 : ℝ) / 2 + 1 / (k - 1)) * n | ||
|
|
||
| /-- The conjectured value for the anti-Ramsey number of paths. | ||
| AR(n, Pₖ) = max(C(k-2, 2) + 1, C(ℓ-1, 2) + (ℓ-1)(n-ℓ+1) + ε) | ||
| where ℓ = ⌊(k-1)/2⌋ and ε = 1 if k is odd, ε = 2 otherwise. -/ | ||
| noncomputable def conjecturedARPath (n k : ℕ) : ℕ := | ||
| let ell := (k - 1) / 2 -- ℓ = ⌊(k-1)/2⌋ | ||
| let eps := if k % 2 = 1 then 1 else 2 -- ε = 1 if k odd, 2 otherwise | ||
| max (Nat.choose (k - 2) 2 + 1) | ||
| (Nat.choose (ell - 1) 2 + (ell - 1) * (n - ell + 1) + eps) | ||
|
|
||
| /-- | ||
| The anti-Ramsey number for cycles satisfies | ||
| AR(n, Cₖ) = ((k-2)/2 + 1/(k-1)) · n + O(1). | ||
| This is a conjecture of Erdős, Simonovits, and Sós [ESS75]. | ||
| -/ | ||
| @[category research open, AMS 5] | ||
| theorem erdos_1105_cycles (k : ℕ) (hk : 3 ≤ k) : | ||
| ∃ C : ℝ, ∀ n : ℕ, |antiRamseyNumber n (cycleGraph k) - conjecturedARCycle n k| ≤ C := by | ||
| sorry | ||
|
|
||
| /-- | ||
| The anti-Ramsey number for paths satisfies | ||
| AR(n, Pₖ) = max(C(k-2,2) + 1, C(ℓ-1,2) + (ℓ-1)(n-ℓ+1) + ε) | ||
| where ℓ = ⌊(k-1)/2⌋ and ε = 1 if k is odd and ε = 2 otherwise. | ||
| This is a conjecture of Erdős, Simonovits, and Sós [ESS75]. | ||
| The case n ≥ k ≥ 5 has been announced as proven by Yuan [Yu21]. | ||
| -/ | ||
| @[category research open, AMS 5] | ||
| theorem erdos_1105.variants.paths (n k : ℕ) (hn : k ≤ n) (hk : 5 ≤ k) : | ||
| antiRamseyNumber n (pathGraph k) = conjecturedARPath n k := by | ||
| sorry | ||
|
|
||
| /-- | ||
| Known result: AR(n, C₃) = n - 1. | ||
| Proved by Erdős, Simonovits, and Sós [ESS75]. | ||
| -/ | ||
| @[category research solved, AMS 5] | ||
| theorem erdos_1105.variants.triangles (n : ℕ) (hn : 3 ≤ n) : | ||
| antiRamseyNumber n (cycleGraph 3) = n - 1 := by | ||
| sorry | ||
|
|
||
| end Erdos1105 | ||
|
Collaborator
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Can you move your new material to a new |
| Original file line number | Diff line number | Diff line change | ||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
|
@@ -20,6 +20,33 @@ variable {V α ι : Type*} {G : SimpleGraph V} {n : ℕ} | |||||||||||||||||||||
|
|
||||||||||||||||||||||
| namespace SimpleGraph | ||||||||||||||||||||||
|
|
||||||||||||||||||||||
| /-- An edge coloring of a simple graph `G` with color type `α`. | ||||||||||||||||||||||
| Note: this exists in upstream Mathlib as SimpleGraph.EdgeLabeling -/ | ||||||||||||||||||||||
| def EdgeColoring (G : SimpleGraph V) (α : Type*) := G.edgeSet → α | ||||||||||||||||||||||
|
Comment on lines
+23
to
+25
Collaborator
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Can you keep the mathlib name? |
||||||||||||||||||||||
|
|
||||||||||||||||||||||
| variable {W : Type*} | ||||||||||||||||||||||
|
|
||||||||||||||||||||||
| /-- A subgraph `H` of a graph with edge coloring `c` is rainbow if all edges of `H` have distinct | ||||||||||||||||||||||
| colors. -/ | ||||||||||||||||||||||
| def IsRainbow {V : Type*} {G : SimpleGraph V} {α : Type*} (c : EdgeColoring G α) | ||||||||||||||||||||||
| (H : G.Subgraph) : Prop := | ||||||||||||||||||||||
| Function.Injective fun e : H.edgeSet => c ⟨e.val, H.edgeSet_subset e.property⟩ | ||||||||||||||||||||||
|
|
||||||||||||||||||||||
| /-- A graph `G` contains a rainbow copy of `H` if there is a subgraph of `G` that is isomorphic | ||||||||||||||||||||||
| to `H` and is rainbow under the edge coloring `c`. -/ | ||||||||||||||||||||||
| def HasRainbowCopy {V W : Type*} {G : SimpleGraph V} {α : Type*} (c : EdgeColoring G α) | ||||||||||||||||||||||
| (H : SimpleGraph W) : Prop := | ||||||||||||||||||||||
| ∃ (S : G.Subgraph), H ⊑ S.coe ∧ IsRainbow c S | ||||||||||||||||||||||
|
Comment on lines
+35
to
+39
Collaborator
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Although your definition is equivalent, it is not the one your docstring describes (containment instead of iso). Can you make them match?
Suggested change
|
||||||||||||||||||||||
|
|
||||||||||||||||||||||
| /-- An edge coloring of `Kₙ` with `m` colors that avoids rainbow copies of `H`. -/ | ||||||||||||||||||||||
| def IsAntiRamseyColoring (n m : ℕ) (H : SimpleGraph W) : Prop := | ||||||||||||||||||||||
| ∃ (c : EdgeColoring (completeGraph (Fin n)) (Fin m)), ¬HasRainbowCopy c H | ||||||||||||||||||||||
|
|
||||||||||||||||||||||
| /-- The anti-Ramsey number AR(n, H) is the maximum number of colors in which the edges of Kₙ | ||||||||||||||||||||||
| can be colored without creating a rainbow copy of H. -/ | ||||||||||||||||||||||
| noncomputable def antiRamseyNumber (n : ℕ) (H : SimpleGraph W) : ℕ := | ||||||||||||||||||||||
| sSup {m : ℕ | IsAntiRamseyColoring n m H} | ||||||||||||||||||||||
|
|
||||||||||||||||||||||
| lemma le_chromaticNumber_iff_colorable : n ≤ G.chromaticNumber ↔ ∀ m, G.Colorable m → n ≤ m := by | ||||||||||||||||||||||
| simp [chromaticNumber] | ||||||||||||||||||||||
|
|
||||||||||||||||||||||
|
|
||||||||||||||||||||||
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.