Skip to content

gzw820/YOLOV3-1

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

81 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

YOLOV3


Introduction

This is my own YOLOV3 written in pytorch, and is also the first time i have reproduced a object detection model.The dataset used is PASCAL VOC. The eval tool is the voc2010. Now the mAP gains the goal score.

Subsequently, i will continue to update the code to make it more concise , and add the new and efficient tricks.

Note : Now this repository supports the model compression in the new branch model_compression


Results

name Train Dataset Val Dataset mAP(others) mAP(mine) notes
YOLOV3-448-544 2007trainval + 2012trainval 2007test 0.769 0.768 | - baseline(augument + step lr)
YOLOV3-*-544 2007trainval + 2012trainval 2007test 0.793 0.803 | - +multi-scale training
YOLOV3-*-544 2007trainval + 2012trainval 2007test 0.806 0.811 | - +focal loss(note the conf_loss in the start is lower)
YOLOV3-*-544 2007trainval + 2012trainval 2007test 0.808 0.813 | - +giou loss
YOLOV3-*-544 2007trainval + 2012trainval 2007test 0.812 0.821 | - +label smooth
YOLOV3-*-544 2007trainval + 2012trainval 2007test 0.822 0.826 | - +mixup
YOLOV3-*-544 2007trainval + 2012trainval 2007test 0.833 0.832 | 0.840 +cosine lr
YOLOV3-*-* 2007trainval + 2012trainval 2007test 0.858 0.858 | 0.860 +multi-scale test and flip, nms threshold is 0.45

Note :

  • YOLOV3-448-544 means train image size is 448 and test image size is 544. "*" means the multi-scale.
  • mAP(mine)'s format is (use_difficult mAP | no_difficult mAP).
  • In the test, the nms threshold is 0.5(except the last one) and the conf_score is 0.01.others nms threshold is 0.45(0.45 will increase the mAP)
  • Now only support the single gpu to train and test.

Environment

  • Nvida GeForce RTX 2080 Ti
  • CUDA10.0
  • CUDNN7.0
  • ubuntu 16.04
  • python 3.5
# install packages
pip3 install -r requirements.txt --user

Brief

  • Data Augment (RandomHorizontalFlip, RandomCrop, RandomAffine, Resize)
  • Step lr Schedule
  • Multi-scale Training (320 to 640)
  • focal loss
  • GIOU
  • Label smooth
  • Mixup
  • cosine lr
  • Multi-scale Test and Flip

Prepared work

1、Git clone YOLOV3 repository

git clone https://github.com/Peterisfar/YOLOV3.git

update the "PROJECT_PATH" in the params.py.

2、Download dataset

  • Download Pascal VOC dataset : VOC 2012_trainvalVOC 2007_trainvalVOC2007_test. put them in the dir, and update the "DATA_PATH" in the params.py.
  • Convert data format : Convert the pascal voc *.xml format to custom format (Image_path0   xmin0,ymin0,xmax0,ymax0,class0   xmin1,ymin1...)
cd YOLOV3 && mkdir data
cd utils
python3 voc.py # get train_annotation.txt and test_annotation.txt in data/

3、Download weight file

Make dir weight/ in the YOLOV3 and put the weight file in.


Train

Run the following command to start training and see the details in the config/yolov3_config_voc.py

WEIGHT_PATH=weight/darknet53_448.weights

CUDA_VISIBLE_DEVICES=0 nohup python3 -u train.py --weight_path $WEIGHT_PATH --gpu_id 0 > nohup.log 2>&1 &

Notes:

  • Training steps could run the "cat nohup.log" to print the log.
  • It supports to resume training adding --resume, it will load last.pt automaticly.

Test

You should define your weight file path WEIGHT_FILE and test data's path DATA_TEST

WEIGHT_PATH=weight/best.pt
DATA_TEST=./data/test # your own images

CUDA_VISIBLE_DEVICES=0 python3 test.py --weight_path $WEIGHT_PATH --gpu_id 0 --visiual $DATA_TEST --eval

The images can be seen in the data/


TODO

  • Mish
  • OctConv
  • Custom data

Reference

About

yolov3 by pytorch

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%