Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
61 changes: 61 additions & 0 deletions transformers/nlp/text_named_entity_conversion_transformer.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,61 @@
"""Preprocess the text column by replacing named entities with a standard tag
For example: 'Mary lives in London from 2018' -> '[PERSON] lives in [GPE] from [DATE]' """
import datatable as dt
import numpy as np
from h2oaicore.transformer_utils import CustomTransformer


class NamedEntityConverterTransformer(CustomTransformer):
"""Transformer to replace mentions of named entities with standard tags the text"""
_numeric_output = False
_modules_needed_by_name = ["spacy==2.1.8"]

def __init__(self, **kwargs):
super().__init__(**kwargs)
self.replace_person = True # turn off as needed
self.replace_location = True # turn off as needed
self.replace_date = True # turn off as needed

import spacy
try:
self.nlp = spacy.load('en_core_web_sm')
except IOError:
from spacy.cli import download
download('en_core_web_sm')
self.nlp = spacy.load('en_core_web_sm')

@staticmethod
def get_default_properties():
return dict(col_type="text", min_cols=1, max_cols=1, relative_importance=1)

@property
def display_name(self):
return "NamedEntityConvertedText"

def convert_named_entities(self, text, entity_type):
tokens = self.nlp(text)
new_text = []
for token in tokens:
if token.ent_type_ == entity_type:
word = "[{0}]".format(entity_type)
else:
word = token.text
new_text.append(word)
return " ".join(new_text)

def convert_text(self, text):
if self.replace_person:
text = self.convert_named_entities(text, "PERSON")
if self.replace_date:
text = self.convert_named_entities(text, "DATE")
if self.replace_location:
text = self.convert_named_entities(text, "LOC")
text = self.convert_named_entities(text, "GPE")

return text

def fit_transform(self, X: dt.Frame, y: np.array = None):
return self.transform(X)

def transform(self, X: dt.Frame):
return X.to_pandas().astype(str).fillna("NA").iloc[:, 0].apply(lambda x: self.convert_text(x))