Skip to content

πŸš€ Complete AI Development Toolkit Template - Add RAG, MCP, and AI assistance to any project in 2 minutes

Notifications You must be signed in to change notification settings

hartou/ai-dev-toolkit-template

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

2 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

πŸš€ AI Development Toolkit Template

A complete, reusable template for AI-enhanced development environments with local RAG, MCP integration, and visual service management.

🎯 What You Get

This template provides a production-ready AI development ecosystem that you can deploy to any project in minutes:

Core Components

  • 🧠 Local RAG System - 2600+ document semantic search
  • πŸ€– MCP Server - AI agent integration protocol
  • πŸ“ File Manager - Documentation upload/organization
  • πŸŽ›οΈ Control Panel - Visual service management
  • βš™οΈ App Control Scripts - Command-line orchestration

Key Features

  • βœ… Zero external dependencies - Works completely offline
  • βœ… Project-agnostic - Adapts to any codebase
  • βœ… AI-ready - Immediate integration with coding assistants
  • βœ… Professional UI - Enterprise-grade control interfaces
  • βœ… One-command setup - Automated deployment scripts

πŸš€ Quick Start

Option 1: Use GitHub Template

# Create new repo from template
gh repo create my-ai-project --template hartou/ai-dev-toolkit-template

# Deploy to existing project
cd my-existing-project
curl -sSL https://raw.githubusercontent.com/hartou/ai-dev-toolkit-template/main/scripts/deploy.sh | bash

Option 2: NPM Package

# Install globally
npm install -g ai-dev-toolkit

# Deploy to any project
cd my-project
ai-dev-toolkit init
ai-dev-toolkit start

Option 3: Manual Setup

# Clone template
git clone https://github.com/hartou/ai-dev-toolkit-template.git
cd ai-dev-toolkit-template

# Configure and deploy
./scripts/setup.sh
./scripts/deploy.sh /path/to/target/project

πŸ“ Template Structure

ai-dev-toolkit-template/
β”œβ”€β”€ πŸ“¦ core/                    # Core reusable components
β”‚   β”œβ”€β”€ rag-system/            # RAG engine + database
β”‚   β”œβ”€β”€ mcp-server/            # Model Context Protocol server
β”‚   β”œβ”€β”€ file-manager/          # Documentation management
β”‚   β”œβ”€β”€ control-panel/         # Service orchestration UI
β”‚   └── shared/                # Common utilities
β”œβ”€β”€ πŸ”§ scripts/                # Automation and deployment
β”‚   β”œβ”€β”€ deploy.sh              # Deploy to existing project
β”‚   β”œβ”€β”€ setup.sh               # Initial configuration
β”‚   β”œβ”€β”€ app-control.sh         # Service management
β”‚   └── templates/             # Configuration templates
β”œβ”€β”€ πŸ“‹ configs/                # Default configurations
β”‚   β”œβ”€β”€ package.template.json  # NPM dependencies
β”‚   β”œβ”€β”€ docker-compose.yml     # Container deployment
β”‚   └── .env.template          # Environment variables
β”œβ”€β”€ πŸ“š docs/                   # Documentation and guides
└── πŸ§ͺ examples/               # Integration examples

βš™οΈ Configuration

Project Adaptation

The toolkit automatically adapts to your project structure:

# Auto-detect project type
./scripts/detect-project.sh

# Configure for specific frameworks
ai-dev-toolkit configure --framework react
ai-dev-toolkit configure --framework nextjs
ai-dev-toolkit configure --framework python

Custom Documentation

# Index your project documentation
ai-dev-toolkit index --source ./docs
ai-dev-toolkit index --source ./README.md
ai-dev-toolkit index --include "*.md,*.rst,*.txt"

Service Ports

# Customize service ports
export RAG_PORT=4001
export MCP_PORT=4002  
export FILE_MANAGER_PORT=4003
export CONTROL_PANEL_PORT=4004

πŸŽ›οΈ Service Management

Once deployed, manage your AI development environment:

# Start all services
./ai-control.sh start

# Individual service management
./ai-control.sh rag start
./ai-control.sh mcp start
./ai-control.sh panel start

# Web interfaces
open http://localhost:4001  # RAG Search
open http://localhost:4003  # File Manager
open http://localhost:4004  # Control Panel

πŸ”Œ Integration Examples

VS Code Integration

{
  "settings": {
    "ai-dev-toolkit.ragEndpoint": "http://localhost:4001",
    "ai-dev-toolkit.mcpServer": "http://localhost:4002"
  }
}

AI Assistant Integration

// Use the MCP server in your AI workflow
import { MCPClient } from '@modelcontextprotocol/sdk'

const mcp = new MCPClient('stdio', {
  command: 'node',
  args: ['./ai-dev-toolkit/mcp-server/index.js']
})

CI/CD Integration

# GitHub Actions
- name: Setup AI Dev Toolkit
  run: |
    curl -sSL https://get.ai-dev-toolkit.com | bash
    ai-dev-toolkit start --headless
    
- name: AI-Enhanced Testing  
  run: |
    ai-dev-toolkit query "test patterns for React components"
    npm test

πŸ“Š Performance Specifications

  • πŸš€ Setup Time: < 2 minutes
  • πŸ’Ύ Memory Usage: < 200MB total
  • πŸ” Search Speed: < 100ms per query
  • πŸ“„ Document Capacity: 10,000+ documents
  • ⚑ Cold Start: < 5 seconds

πŸ—οΈ Architecture

Microservices Design

Each component runs independently and can be deployed separately:

graph TB
    A[Control Panel :4004] --> B[RAG System :4001]
    A --> C[MCP Server :4002] 
    A --> D[File Manager :4003]
    B --> E[SQLite Database]
    C --> E
    D --> F[Documentation Store]
    G[AI Agents] --> C
    H[Developers] --> A
Loading

Data Flow

  1. Documentation β†’ File Manager β†’ RAG Indexer β†’ SQLite Database
  2. AI Queries β†’ MCP Server β†’ RAG Engine β†’ Semantic Search Results
  3. Human Queries β†’ Web Interface β†’ RAG API β†’ Search Results
  4. Management β†’ Control Panel β†’ Service Scripts β†’ System Status

πŸŽͺ Use Cases

Individual Developers

  • Personal project knowledge bases
  • AI-assisted coding environments
  • Documentation-driven development

Development Teams

  • Shared knowledge repositories
  • Team onboarding acceleration
  • Collaborative AI development

Organizations

  • Enterprise AI development platforms
  • Standardized development environments
  • Knowledge management systems

Open Source Projects

  • Contributor onboarding
  • Documentation accessibility
  • AI-powered issue resolution

πŸ”„ Update Strategy

Keep your toolkit current:

# Update to latest version
ai-dev-toolkit update

# Update specific components
ai-dev-toolkit update rag
ai-dev-toolkit update mcp

# Backup before updates
ai-dev-toolkit backup
ai-dev-toolkit restore backup-20241109.zip

🎯 Roadmap

V2.0 Features (Coming Soon)

  • πŸ”Œ Plugin System - Custom integrations
  • 🌐 Multi-language Support - Python, Java, Go
  • πŸ“± Mobile Interface - Responsive design
  • πŸ”’ Authentication - Multi-user support
  • ☁️ Cloud Deployment - Kubernetes manifests

V3.0 Vision

  • πŸ€– AI Code Generation - Integrated with RAG knowledge
  • πŸ“Š Analytics Dashboard - Usage insights and optimization
  • πŸ”„ Real-time Collaboration - Live document sharing
  • 🎨 Custom Themes - Branding and personalization

πŸ“ Contributing

Help improve the toolkit:

# Development setup
git clone https://github.com/hartou/ai-dev-toolkit-template.git
cd ai-dev-toolkit-template
./scripts/dev-setup.sh

# Run tests
npm test

# Submit improvements
git checkout -b feature/my-improvement
git commit -m "Add awesome feature"
git push origin feature/my-improvement

πŸ“„ License

MIT License - Use freely in personal and commercial projects.

πŸ™‹ Support


Transform any project into an AI-enhanced development environment in under 2 minutes. πŸš€