This document explains how to build the MPT model using TensorRT-LLM and run on a single GPU and a single node with multiple GPUs.
- MPT
- Overview
- Support Matrix
- MPT 7B
- 1.1 Convert from HF Transformers in FP
- 1.2 Convert from HF Transformers with weight-only quantization
- 1.3 Convert from HF Transformers with SmoothQuant quantization
- 1.4 Convert from HF Transformers with INT8 KV cache quantization
- 1.5 AWQ weight-only quantization with AMMO
- 1.6 FP8 Post-Training Quantization with AMMO
- 1.6 Weight-only quantization with AMMO
- 1.7 SmoothQuant and INT8 KV cache with AMMO
- 2.1 Build TensorRT engine(s)
- MPT 30B
- Replit Code V-1.5 3B
- MPT 7B
The TensorRT-LLM MPT implementation can be found in tensorrt_llm/models/mpt/model.py
. The TensorRT-LLM MPT example code is located in examples/mpt
. There is one main file:
convert_checkpoint.py
to convert a checkpoint from the HuggingFace (HF) Transformers format to the TensorRT-LLM format.
In addition, there are two shared files in the parent folder examples
for inference and evaluation:
../run.py
to run the inference on an input text;../summarize.py
to summarize the articles in the cnn_dailymail dataset.
- FP16
- FP8 (with FP8 KV Cache)
- INT8 & INT4 Weight-Only
- INT8 Smooth Quant
- INT4 AWQ
- Tensor Parallel
- MHA, MQA & GQA
- STRONGLY TYPED
Please install required packages first:
pip install -r requirements.txt
The convert_checkpoint.py
script allows you to convert weights from HF Transformers format to TRTLLM checkpoints.
# Generate FP16 checkpoints.
python convert_checkpoint.py --model_dir mosaicml/mpt-7b --output_dir ./ckpts/mpt-7b/fp16/ --dtype float16
# Generate FP32 checkpoints with TP=4.
python convert_checkpoint.py --model_dir mosaicml/mpt-7b --output_dir ./ckpts/mpt-7b/fp32_tp4/ --dtype float32 --tp_size 4
# Use int8 weight-only quantization.
python convert_checkpoint.py --model_dir mosaicml/mpt-7b --output_dir ./ckpts/mpt-7b/int8_wo/ --use_weight_only
# Use int4 weight-only quantization.
python convert_checkpoint.py --model_dir mosaicml/mpt-7b --output_dir ./ckpts/mpt-7b/int4_wo/ --use_weight_only --weight_only_precision int4
# Use int8 smoothquant (weight and activation) quantization.
python convert_checkpoint.py --model_dir mosaicml/mpt-7b --output_dir ./ckpts/mpt-7b/int8_sq/ --smoothquant 0.5
# Use int8 kv cache quantization.
python convert_checkpoint.py --model_dir mosaicml/mpt-7b --output_dir ./ckpts/mpt-7b/fp16_int8kv/ --dtype float16 --calibrate_kv_cache
INT8-KV-cache can be used with SQ and Weight-only at the same time
We now introduce AMMO to do all quantization First make sure AMMO toolkit is installed (see examples/quantization/README.md)
# INT4 AWQ quantization using AMMO.
python ../quantization/quantize.py --model_dir mosaicml/mpt-7b --output_dir ./ckpts/mpt-7b/int4_awq/ --qformat int4_awq
# FP8 quantization using AMMO.
python ../quantization/quantize.py --model_dir mosaicml/mpt-7b --output_dir ./ckpts/mpt-7b/fp8/ --qformat fp8 --kv_cache_dtype fp8
# INT8 Weight-only quantization using AMMO with TP=2.
python ../quantization/quantize.py --model_dir mosaicml/mpt-7b --output_dir ./ckpts/mpt-7b/int8_wo/ --qformat int8_wo --tp_size 2
# INT4 Weight-only quantization using AMMO.
python ../quantization/quantize.py --model_dir mosaicml/mpt-7b --output_dir ./ckpts/mpt-7b/int4_wo/ --qformat int4_wo
# Use int4 awq quantization.
python ../quantization/quantize.py --model_dir mosaicml/mpt-7b --output_dir ./ckpts/mpt-7b/sq_int8kv/ --qformat int8_sq --kv_cache_dtype int8
INT8-KV-cache can also be used with Weight-only at the same time
All of the checkpoint generated by convert_checkpoint.py
or quantize.py
(AMMO) can share the same building commands.
# Build a single-GPU float16 engine using TRTLLM checkpoints.
trtllm-build --checkpoint_dir=./ckpts/mpt-7b/fp16 \
--max_batch_size 32 \
--max_input_len 1024 \
--max_output_len 512 \
--gemm_plugin float16 \
--workers 1 \
--output_dir ./trt_engines/mpt-7b/fp16
Same commands can be changed to convert MPT 30B to TRT LLM format. Below is an example to build MPT30B fp16 4-way tensor parallelized TRT engine
The convert_checkpoint.py
script allows you to convert weights from HF Transformers format to TRTLLM format.
python convert_checkpoint.py --model_dir mosaicml/mpt-30b --output_dir ./ckpts/mpt-30b/fp16_tp4/ --tp_szie 4 --dtype float16
Examples of build invocations:
# Build 4-GPU MPT-30B float16 engines
trtllm-build --checkpoint_dir ./ckpts/mpt-30b/fp16_tp4 \
--max_batch_size 32 \
--max_input_len 1024 \
--max_output_len 512 \
--gemm_plugin float16 \
--workers 4 \
--output_dir ./trt_engines/mpt-30b/fp16_tp4
# Run 4-GPU MPT-30B TRT engine on a sample input prompt
mpirun -n 4 --allow-run-as-root \
python ../run.py --max_output_len 10 \
--engine_dir ./trt_engines/mpt-30b/fp16/4-gpu/ \
--tokenizer_dir mosaicml/mpt-30b
Same commands can be changed to convert Replit Code V-1.5 3B to TRT LLM format. Below is an example to build Replit Code V-1.5 3B fp16 2-way tensor parallelized TRT engine.
The convert_checkpoint.py
script allows you to convert weights from HF Transformers format to TRTLLM format.
python convert_checkpoint.py --model_dir ./replit-code-v1_5-3b --output_dir ./ckpts/replit-code-v1_5-3b/bf16_tp2/ --tp_size 2 --dtype bfloat16
Examples of build invocations:
# Build 2-GPU Replit Code V-1.5 3B bfloat16 engines
trtllm-build --checkpoint_dir ./ckpts/replit-code-v1_5-3b/bf16_tp2 \
--max_batch_size 32 \
--max_input_len 1024 \
--max_output_len 512 \
--gpt_attention_plugin bfloat16 \
--gemm_plugin bfloat16 \
--workers 2 \
--output_dir ./trt_engines/replit-code-v1_5-3b/bf16_tp2
# Run 2-GPU Replit Code V-1.5 3B TRT engine on a sample input prompt
mpirun -n 2 --allow-run-as-root \
python ../run.py --max_output_len 64 \
--input_text "def fibonacci" \
--engine_dir ./trt_engines/replit-code-v1_5-3b/bf16_tp2 \
--tokenizer_dir ./replit-code-v1_5-3b/
Here is the output of above command.
Input: "def fibonacci"
Output: "(n):
if n == 0:
return 0
elif n == 1:
return 1
else:
return fibonacci(n-1) + fibonacci(n-2)
print(fibonacci(10))"