forked from ModelTC/lightllm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
api_server.py
executable file
·456 lines (392 loc) · 18.9 KB
/
api_server.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
# Adapted from vllm/entrypoints/api_server.py
# of the vllm-project/vllm GitHub repository.
#
# Copyright 2023 ModelTC Team
# Copyright 2023 vLLM Team
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import asyncio
import time
import torch
import uvloop
import sys
from .build_prompt import build_prompt
asyncio.set_event_loop_policy(uvloop.EventLoopPolicy())
import argparse
import json
from http import HTTPStatus
import uuid
import multiprocessing as mp
from typing import AsyncGenerator
from fastapi import BackgroundTasks, FastAPI, Request
from fastapi.responses import Response, StreamingResponse, JSONResponse
import uvicorn
from .sampling_params import SamplingParams
from .multimodal_params import MultimodalParams
from .httpserver.manager import HttpServerManager
from .detokenization.manager import start_detokenization_process
from .router.manager import start_router_process
from .embed_cache.manager import start_cache_manager
from .visualserver.manager import start_visual_process
from .req_id_generator import ReqIDGenerator
from lightllm.utils.net_utils import alloc_can_use_network_port
from lightllm.utils.start_utils import start_submodule_processes
from .api_models import (
ChatCompletionRequest,
UsageInfo,
ChatMessage,
ChatCompletionResponseChoice,
ChatCompletionResponse,
DeltaMessage,
ChatCompletionStreamResponse,
ChatCompletionStreamResponseChoice,
)
from lightllm.utils.log_utils import init_logger
logger = init_logger(__name__)
TIMEOUT_KEEP_ALIVE = 5 # seconds.
g_id_gen = ReqIDGenerator()
app = FastAPI()
isFirst = True
def create_error_response(status_code: HTTPStatus, message: str) -> JSONResponse:
return JSONResponse({"message": message}, status_code=status_code.value)
@app.get("/healthz")
@app.get("/health")
def healthcheck():
return "OK"
@app.post("/generate")
async def generate(request: Request) -> Response:
global isFirst
if isFirst:
loop = asyncio.get_event_loop()
loop.create_task(httpserver_manager.handle_loop())
isFirst = False
request_dict = await request.json()
prompt = request_dict.pop("inputs")
sample_params_dict = request_dict["parameters"]
return_details = sample_params_dict.pop("return_details", False)
sampling_params = SamplingParams(**sample_params_dict)
sampling_params.verify()
multimodal_params_dict = request_dict.get("multimodal_params", {})
multimodal_params = MultimodalParams(**multimodal_params_dict)
request_id = g_id_gen.generate_id()
results_generator = httpserver_manager.generate(prompt, sampling_params, request_id, multimodal_params)
# Non-streaming case
final_output = []
count_output_tokens = 0
tokens = []
prompt_logprobs = None
prompt_token_ids = None
is_first_metadata = True
async for request_output, metadata, finish_status in results_generator:
if await request.is_disconnected():
# Abort the request if the client disconnects.
await httpserver_manager.abort(request_id)
return Response(status_code=499)
# when set "--return_all_prompt_logprobs", the first token metadata will contains
# prompt_logprobs and prompt_token_ids
if is_first_metadata:
prompt_logprobs = metadata.get("prompt_logprobs", None)
prompt_token_ids = metadata.get("prompt_token_ids", None)
if prompt_logprobs is not None:
del metadata["prompt_logprobs"]
if prompt_token_ids is not None:
del metadata["prompt_token_ids"]
is_first_metadata = False
count_output_tokens += 1
final_output.append(request_output)
if return_details:
metadata["text"] = request_output
tokens.append(metadata)
assert final_output is not None
ret = {
"generated_text": ["".join(final_output)],
"count_output_tokens": count_output_tokens,
"finish_reason": finish_status.get_finish_reason()
}
if return_details:
ret["tokens"] = tokens
if prompt_token_ids is not None:
ret["prompt_token_ids"] = prompt_token_ids
if prompt_logprobs is not None:
ret["prompt_logprobs"] = prompt_logprobs
return Response(content=json.dumps(ret, ensure_ascii=False).encode("utf-8"))
@app.post("/generate_stream")
async def generate_stream(request: Request) -> Response:
global isFirst
if isFirst:
loop = asyncio.get_event_loop()
loop.create_task(httpserver_manager.handle_loop())
isFirst = False
request_dict = await request.json()
prompt = request_dict.pop("inputs")
sample_params_dict = request_dict["parameters"]
return_details = sample_params_dict.pop("return_details", False)
sampling_params = SamplingParams(**sample_params_dict)
sampling_params.verify()
multimodal_params_dict = request_dict.get("multimodal_params", {})
multimodal_params = MultimodalParams(**multimodal_params_dict)
request_id = g_id_gen.generate_id()
results_generator = httpserver_manager.generate(prompt, sampling_params, request_id, multimodal_params)
# Streaming case
async def stream_results() -> AsyncGenerator[bytes, None]:
async for request_output, metadata, finish_status in results_generator:
ret = {
"token": {
"id": metadata.get("id", None),
"text": request_output,
"logprob": metadata.get("logprob", None),
"special": False
},
"generated_text": None,
"finished": finish_status.is_finished(),
"finish_reason": finish_status.get_finish_reason(),
"details": None
}
yield ("data:" + json.dumps(ret, ensure_ascii=False) + f"\n\n").encode(
"utf-8"
)
async def abort_request() -> None:
await httpserver_manager.abort(request_id)
background_tasks = BackgroundTasks()
# Abort the request if the client disconnects.
background_tasks.add_task(abort_request)
return StreamingResponse(
stream_results(), media_type="text/event-stream", background=background_tasks
)
@app.post("/v1/chat/completions", response_model=ChatCompletionResponse)
async def chat_completions(
request: ChatCompletionRequest, raw_request: Request
) -> Response:
global isFirst
if isFirst:
loop = asyncio.get_event_loop()
loop.create_task(httpserver_manager.handle_loop())
isFirst = False
if request.logit_bias is not None:
return create_error_response(
HTTPStatus.BAD_REQUEST,
"The logit_bias parameter is not currently supported",
)
if request.n > 1:
return create_error_response(
HTTPStatus.BAD_REQUEST, "The n parameter currently only supports 1"
)
if request.function_call != "none":
return create_error_response(
HTTPStatus.BAD_REQUEST, "The function call feature is not supported"
)
created_time = int(time.time())
prompt = await build_prompt(request)
sampling_params = SamplingParams(
do_sample=request.do_sample,
presence_penalty=request.presence_penalty,
frequency_penalty=request.frequency_penalty,
temperature=request.temperature,
top_p=request.top_p,
top_k=request.top_k,
ignore_eos=request.ignore_eos,
max_new_tokens=request.max_tokens,
stop_sequences=request.stop
)
sampling_params.verify()
multimodal_params = MultimodalParams(images=[])
request_id = f"chatcmpl-{uuid.uuid4().hex}"
results_generator = httpserver_manager.generate(prompt, sampling_params, request_id, multimodal_params)
# Non-streaming case
if not request.stream:
final_output = []
prompt_tokens = -1
completion_tokens = 0
async for request_output, metadata, _ in results_generator:
if await raw_request.is_disconnected():
# Abort the request if the client disconnects.
await httpserver_manager.abort(request_id)
return Response(status_code=499)
completion_tokens += 1
if prompt_tokens == -1:
prompt_tokens = metadata["prompt_tokens"]
final_output.append(request_output)
usage = UsageInfo(
prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens,
total_tokens=prompt_tokens + completion_tokens
)
chat_message = ChatMessage(role="assistant", content="".join(final_output))
choice = ChatCompletionResponseChoice(index=0, message=chat_message)
resp = ChatCompletionResponse(
id=request_id,
created=created_time,
model=request.model,
choices=[choice],
usage=usage
)
return resp
# Streaming case
async def stream_results() -> AsyncGenerator[bytes, None]:
async for request_output, metadata, _ in results_generator:
delta_message = DeltaMessage(role="assistant", content=request_output)
stream_choice = ChatCompletionStreamResponseChoice(
index=0, delta=delta_message
)
stream_resp = ChatCompletionStreamResponse(
id=request_id,
created=created_time,
model=request.model,
choices=[stream_choice],
)
yield ("data: " + stream_resp.json(ensure_ascii=False) + f"\n\n").encode("utf-8")
async def abort_request() -> None:
await httpserver_manager.abort(request_id)
background_tasks = BackgroundTasks()
# Abort the request if the client disconnects.
background_tasks.add_task(abort_request)
return StreamingResponse(
stream_results(), media_type="text/event-stream", background=background_tasks
)
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--host", type=str, default="127.0.0.1")
parser.add_argument("--port", type=int, default=8000)
parser.add_argument("--model_dir", type=str, default=None,
help="the model weight dir path, the app will load config, weights and tokenizer from this dir")
parser.add_argument("--tokenizer_mode", type=str, default="slow",
help="""tokenizer load mode, can be slow or auto, slow mode load fast but run slow, slow mode is good for debug and test,
when you want to get best performance, try auto mode""")
parser.add_argument("--load_way", type=str, default="HF",
help="the way of loading model weights, the default is HF(Huggingface format), llama also supports DS(Deepspeed)")
parser.add_argument("--max_total_token_num", type=int, default=6000,
help="the total token nums the gpu and model can support, equals = max_batch * (input_len + output_len)")
parser.add_argument("--batch_max_tokens", type=int, default=None,
help="max tokens num for new cat batch, it control prefill batch size to Preventing OOM")
parser.add_argument("--eos_id", type=int, default=2,
help="eos stop token id")
parser.add_argument("--running_max_req_size", type=int, default=1000,
help="the max size for forward requests in the same time")
parser.add_argument("--tp", type=int, default=1,
help="model tp parral size, the default is 1")
parser.add_argument("--max_req_input_len", type=int, default=2048,
help="the max value for req input tokens num")
parser.add_argument("--max_req_total_len", type=int, default=2048 + 1024,
help="the max value for req_input_len + req_output_len")
parser.add_argument("--nccl_port", type=int, default=28765,
help="the nccl_port to build a distributed environment for PyTorch")
parser.add_argument("--mode", type=str, default=[], nargs='+',
help="""Model mode: [triton_int8kv | ppl_int8kv | ppl_fp16 | triton_flashdecoding
| triton_gqa_attention | triton_gqa_flashdecoding]
[triton_int8weight | triton_int4weight | lmdeploy_int4weight | ppl_int4weight],
triton_flashdecoding mode is for long context, current support llama llama2 qwen;
triton_gqa_attention and triton_gqa_flashdecoding is fast kernel for model which use GQA;
triton_int8kv mode use int8 to store kv cache, can increase token capacity, use triton kernel;
ppl_int8kv mode use int8 to store kv cache, and use ppl fast kernel;
ppl_fp16 mode use ppl fast fp16 decode attention kernel;
triton_int8weight and triton_int4weight and lmdeploy_int4weight or ppl_int4weight mode use int8 and int4 to store weights;
you need to read source code to make sure the supported detail mode for all models""")
parser.add_argument("--trust_remote_code", action='store_true',
help="Whether or not to allow for custom models defined on the Hub in their own modeling files.")
parser.add_argument("--disable_log_stats", action='store_true',
help="disable logging throughput stats.")
parser.add_argument("--log_stats_interval", type=int, default=10,
help="log stats interval in second.")
parser.add_argument("--router_token_ratio", type=float, default=0.0,
help="token ratio to control router dispatch")
parser.add_argument("--router_max_new_token_len", type=int, default=1024,
help="the request max new token len for router")
parser.add_argument("--no_skipping_special_tokens", action="store_true",
help="whether to skip special tokens when decoding")
parser.add_argument("--no_spaces_between_special_tokens", action="store_true",
help="whether to add spaces between special tokens when decoding")
parser.add_argument("--splitfuse_mode", action='store_true',
help="use splitfuse mode")
parser.add_argument("--splitfuse_block_size", type=int, default=256,
help="splitfuse block size")
parser.add_argument("--prompt_cache_strs", type=str, default=[], nargs='+',
help="""prompt cache strs""")
parser.add_argument("--enable_multimodal", action='store_true',
help="Whether or not to allow to load additional multimodal models.")
parser.add_argument("--cache_capacity", type=int, default=200,
help="cache server capacity for multimodal resources")
parser.add_argument("--cache_reserved_ratio", type=float, default=0.5,
help="cache server reserved capacity ratio after clear")
parser.add_argument("--return_all_prompt_logprobs", action="store_true",
help="return all prompt tokens logprobs")
parser.add_argument("--long_truncation_mode", type=str, choices=[None, 'head', 'center'], default=None,
help="""use to select the handle way when input token len > max_req_input_len.
None : raise Exception
head : remove some head tokens to make input token len <= max_req_input_len
center : remove some tokens in center loc to make input token len <= max_req_input_len""")
args = parser.parse_args()
# 非splitfuse 模式,不支持 prompt cache 特性
if not args.splitfuse_mode:
assert len(args.prompt_cache_strs) == 0
assert args.max_req_input_len < args.max_req_total_len
assert args.max_req_total_len <= args.max_total_token_num
if not args.splitfuse_mode:
# 普通模式下
if args.batch_max_tokens is None:
batch_max_tokens = int(1 / 6 * args.max_total_token_num)
batch_max_tokens = max(batch_max_tokens, args.max_req_total_len)
args.batch_max_tokens = batch_max_tokens
else:
assert (
args.batch_max_tokens >= args.max_req_total_len
), "batch_max_tokens must >= max_req_total_len"
else:
# splitfuse 模式下
# assert args.batch_max_tokens is not None, "need to set by yourself"
if args.batch_max_tokens is None:
batch_max_tokens = int(1 / 6 * args.max_total_token_num)
batch_max_tokens = max(batch_max_tokens, args.splitfuse_block_size)
args.batch_max_tokens = batch_max_tokens
can_use_ports = alloc_can_use_network_port(
num=5 + args.tp, used_nccl_port=args.nccl_port
)
router_port, detokenization_port, httpserver_port, visual_port, cache_port = can_use_ports[0:5]
model_rpc_ports = can_use_ports[5:]
if args.enable_multimodal:
start_submodule_processes(start_funcs=[start_cache_manager,],
start_args=[(cache_port, args)])
# help to manage data stored on Ceph
if 's3://' in args.model_dir:
from lightllm.utils.petrel_helper import s3_model_prepare
s3_model_prepare(args.model_dir)
from .httpserver.manager import HttpServerManager
global httpserver_manager
httpserver_manager = HttpServerManager(
args,
router_port=router_port,
cache_port=cache_port,
visual_port=visual_port,
httpserver_port=httpserver_port,
enable_multimodal=args.enable_multimodal,
)
from .detokenization.manager import start_detokenization_process
start_submodule_processes(start_funcs=[start_router_process, start_detokenization_process],
start_args=[(args, router_port, detokenization_port, model_rpc_ports),
(args, detokenization_port, httpserver_port)])
if args.enable_multimodal:
start_submodule_processes(start_funcs=[start_visual_process,],
start_args=[(args, router_port, visual_port, cache_port),])
if "s3://" in args.model_dir:
from lightllm.utils.petrel_helper import s3_model_clear
s3_model_clear(args.model_dir)
uvicorn.run(
app,
host=args.host,
port=args.port,
log_level="debug",
timeout_keep_alive=TIMEOUT_KEEP_ALIVE,
loop="uvloop",
)
if __name__ == "__main__":
torch.multiprocessing.set_start_method('spawn'), # this code will not be ok for settings to fork to subprocess
main()