Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

save the features.pkl file of the monomer #184

Open
wants to merge 3 commits into
base: main
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
37 changes: 23 additions & 14 deletions inference.py
Original file line number Diff line number Diff line change
Expand Up @@ -341,24 +341,13 @@ def inference_monomer_model(args):
print("running in monomer mode...")
config = model_config(args.model_name)

template_featurizer = templates.TemplateHitFeaturizer(
mmcif_dir=args.template_mmcif_dir,
max_template_date=args.max_template_date,
max_hits=config.data.predict.max_templates,
kalign_binary_path=args.kalign_binary_path,
release_dates_path=args.release_dates_path,
obsolete_pdbs_path=args.obsolete_pdbs_path
)

use_small_bfd = args.preset == 'reduced_dbs' # (args.bfd_database_path is None)
if use_small_bfd:
assert args.bfd_database_path is not None
else:
assert args.bfd_database_path is not None
assert args.uniref30_database_path is not None

data_processor = data_pipeline.DataPipeline(template_featurizer=template_featurizer,)

output_dir_base = args.output_dir

random_seed = args.data_random_seed
Expand Down Expand Up @@ -423,11 +412,31 @@ def inference_monomer_model(args):
use_small_bfd=use_small_bfd,
no_cpus=args.cpus,
)
t = time.perf_counter()
alignment_runner.run(fasta_path, local_alignment_dir)
print(f"Alignment data time: {time.perf_counter() - t}")

feature_dict = data_processor.process_fasta(fasta_path=fasta_path,
alignment_dir=local_alignment_dir)

features_output_path = os.path.join(local_alignment_dir, 'features.pkl')
if os.path.exists(features_output_path):
feature_dict = pickle.load(open(features_output_path, 'rb'))

else:
template_featurizer = templates.TemplateHitFeaturizer(
mmcif_dir=args.template_mmcif_dir,
max_template_date=args.max_template_date,
max_hits=config.data.predict.max_templates,
kalign_binary_path=args.kalign_binary_path,
release_dates_path=args.release_dates_path,
obsolete_pdbs_path=args.obsolete_pdbs_path
)

data_processor = data_pipeline.DataPipeline(template_featurizer=template_featurizer,)

feature_dict = data_processor.process_fasta(fasta_path=fasta_path,
alignment_dir=local_alignment_dir)
with open(features_output_path, 'wb') as f:
pickle.dump(feature_dict, f, protocol=4)

# Remove temporary FASTA file
os.remove(fasta_path)

Expand Down