Skip to content

Commit

Permalink
GRPO script (#3)
Browse files Browse the repository at this point in the history
* inital commit

* with reward func

* fix box extract

* example line

* don't break when answer malformed

* command and logging

* holly simplicity

* move grpo

* reverse readme

* instructions
  • Loading branch information
qgallouedec authored Jan 24, 2025
1 parent e660e43 commit b47b1d0
Show file tree
Hide file tree
Showing 2 changed files with 143 additions and 0 deletions.
10 changes: 10 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -57,7 +57,17 @@ sudo apt-get install git-lfs

## Training models

### GRPO

```
accelerate launch scripts/training/grpo.py \
--output_dir Qwen2.5-0.5B-GRPO \
--model_name_or_path Qwen/Qwen2.5-0.5B-Instruct \
--dataset_name AI-MO/NuminaMath-TIR \
--per_device_train_batch_size 2 \
--gradient_accumulation_steps 8 \
--logging_steps 10
```

## Evaluating models

Expand Down
133 changes: 133 additions & 0 deletions src/open_r1/grpo.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,133 @@
# Copyright 2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import re
from dataclasses import dataclass, field

from datasets import load_dataset

from trl import GRPOConfig, GRPOTrainer, ModelConfig, ScriptArguments, TrlParser, get_peft_config


@dataclass
class GRPOScriptArguments(ScriptArguments):
"""
Script arguments for the GRPO training script.
Args:
reward_funcs (`list[str]`):
List of reward functions. Possible values: 'accuracy', 'format'.
"""

reward_funcs: list[str] = field(
default_factory=lambda: ["accuracy", "format"],
metadata={"help": "List of reward functions. Possible values: 'accuracy', 'format'"},
)


def extract_boxed_content(text):
start = text.find("boxed{") # Find the starting index of "\boxed{"
if start == -1:
return "" # No match found

# Start reading from the first '{' after "boxed{"
start += len("boxed{")
brace_count = 1
content = []

for i in range(start, len(text)):
char = text[i]
if char == "{":
brace_count += 1
elif char == "}":
brace_count -= 1

# Add the character to the content
if brace_count > 0:
content.append(char)
else:
# We've matched all opening braces
break

# If the braces didn't balance, it's malformed
if brace_count != 0:
return ""

return "".join(content)


def accuracy_reward(completions, ground_truth, **kwargs):
"""Reward function that checks if the completion is the same as the ground truth."""
# Regular expression to capture content inside \boxed{}
contents = [completion[0]["content"] for completion in completions]
answers = [extract_boxed_content(content) for content in contents]
# Reward 1 if the content is the same as the ground truth, 0 otherwise
return [1.0 if answer == gt else 0.0 for answer, gt in zip(answers, ground_truth)]


def format_reward_func(completions, **kwargs):
"""Reward function that checks if the completion has a specific format."""
pattern = r"^<think>.*?</think><answer>.*?</answer>$"
completion_contents = [completion[0]["content"] for completion in completions]
matches = [re.match(pattern, content) for content in completion_contents]
return [1.0 if match else 0.0 for match in matches]


reward_funcs_registry = {
"accuracy": accuracy_reward,
"format": format_reward_func,
}


def main(script_args, training_args, model_args):
# Get reward functions
reward_funcs = [reward_funcs_registry[func] for func in script_args.reward_funcs]

# Load the dataset
dataset = load_dataset(script_args.dataset_name, name=script_args.dataset_config)

# Format into conversation
def make_conversation(example):
ground_truth = extract_boxed_content(example["solution"])
return {
"prompt": [{"role": "user", "content": example["problem"]}],
"ground_truth": ground_truth,
}

dataset = dataset.map(make_conversation)
dataset = dataset.remove_columns("messages")

# Initialize the GRPO trainer
trainer = GRPOTrainer(
model=model_args.model_name_or_path,
reward_funcs=reward_funcs,
args=training_args,
train_dataset=dataset[script_args.dataset_train_split],
eval_dataset=dataset[script_args.dataset_test_split] if training_args.eval_strategy != "no" else None,
peft_config=get_peft_config(model_args),
)

# Train and push the model to the Hub
trainer.train()

# Save and push to hub
trainer.save_model(training_args.output_dir)
if training_args.push_to_hub:
trainer.push_to_hub(dataset_name=script_args.dataset_name)


if __name__ == "__main__":
parser = TrlParser((GRPOScriptArguments, GRPOConfig, ModelConfig))
script_args, training_args, model_args = parser.parse_args_and_config()
main(script_args, training_args, model_args)

0 comments on commit b47b1d0

Please sign in to comment.