Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

GRPO script #3

Merged
merged 13 commits into from
Jan 24, 2025
10 changes: 10 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -57,7 +57,17 @@ sudo apt-get install git-lfs

## Training models

### GRPO

```
accelerate launch scripts/training/grpo.py \
--output_dir Qwen2.5-0.5B-GRPO \
--model_name_or_path Qwen/Qwen2.5-0.5B-Instruct \
--dataset_name AI-MO/NuminaMath-TIR \
--per_device_train_batch_size 2 \
--gradient_accumulation_steps 8 \
--logging_steps 10
```

## Evaluating models

Expand Down
133 changes: 133 additions & 0 deletions src/open_r1/grpo.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,133 @@
# Copyright 2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import re
from dataclasses import dataclass, field

from datasets import load_dataset

from trl import GRPOConfig, GRPOTrainer, ModelConfig, ScriptArguments, TrlParser, get_peft_config


@dataclass
class GRPOScriptArguments(ScriptArguments):
"""
Script arguments for the GRPO training script.

Args:
reward_funcs (`list[str]`):
List of reward functions. Possible values: 'accuracy', 'format'.
"""

reward_funcs: list[str] = field(
default_factory=lambda: ["accuracy", "format"],
metadata={"help": "List of reward functions. Possible values: 'accuracy', 'format'"},
)


def extract_boxed_content(text):
start = text.find("boxed{") # Find the starting index of "\boxed{"
if start == -1:
return "" # No match found

# Start reading from the first '{' after "boxed{"
start += len("boxed{")
brace_count = 1
content = []

for i in range(start, len(text)):
char = text[i]
if char == "{":
brace_count += 1
elif char == "}":
brace_count -= 1

# Add the character to the content
if brace_count > 0:
content.append(char)
else:
# We've matched all opening braces
break

# If the braces didn't balance, it's malformed
if brace_count != 0:
return ""

return "".join(content)


def accuracy_reward(completions, ground_truth, **kwargs):
"""Reward function that checks if the completion is the same as the ground truth."""
# Regular expression to capture content inside \boxed{}
contents = [completion[0]["content"] for completion in completions]
answers = [extract_boxed_content(content) for content in contents]
# Reward 1 if the content is the same as the ground truth, 0 otherwise
return [1.0 if answer == gt else 0.0 for answer, gt in zip(answers, ground_truth)]


def format_reward_func(completions, **kwargs):
"""Reward function that checks if the completion has a specific format."""
pattern = r"^<think>.*?</think><answer>.*?</answer>$"
completion_contents = [completion[0]["content"] for completion in completions]
matches = [re.match(pattern, content) for content in completion_contents]
return [1.0 if match else 0.0 for match in matches]


reward_funcs_registry = {
"accuracy": accuracy_reward,
"format": format_reward_func,
}


def main(script_args, training_args, model_args):
# Get reward functions
reward_funcs = [reward_funcs_registry[func] for func in script_args.reward_funcs]

# Load the dataset
dataset = load_dataset(script_args.dataset_name, name=script_args.dataset_config)

# Format into conversation
def make_conversation(example):
ground_truth = extract_boxed_content(example["solution"])
return {
"prompt": [{"role": "user", "content": example["problem"]}],
"ground_truth": ground_truth,
}

dataset = dataset.map(make_conversation)
dataset = dataset.remove_columns("messages")

# Initialize the GRPO trainer
trainer = GRPOTrainer(
model=model_args.model_name_or_path,
reward_funcs=reward_funcs,
args=training_args,
train_dataset=dataset[script_args.dataset_train_split],
eval_dataset=dataset[script_args.dataset_test_split] if training_args.eval_strategy != "no" else None,
peft_config=get_peft_config(model_args),
)

# Train and push the model to the Hub
trainer.train()

# Save and push to hub
trainer.save_model(training_args.output_dir)
if training_args.push_to_hub:
trainer.push_to_hub(dataset_name=script_args.dataset_name)


if __name__ == "__main__":
parser = TrlParser((GRPOScriptArguments, GRPOConfig, ModelConfig))
script_args, training_args, model_args = parser.parse_args_and_config()
main(script_args, training_args, model_args)
Loading