Skip to content

Commit

Permalink
Revert "Fix FSDP resume Initialization issue" (#34193)
Browse files Browse the repository at this point in the history
Revert "Fix FSDP resume Initialization issue (#34032)"

This reverts commit 4de1bdb.
  • Loading branch information
SunMarc authored Oct 16, 2024
1 parent 3a10c61 commit 3f06f95
Show file tree
Hide file tree
Showing 2 changed files with 0 additions and 68 deletions.
37 changes: 0 additions & 37 deletions src/transformers/trainer.py
Original file line number Diff line number Diff line change
Expand Up @@ -273,39 +273,6 @@ def _get_fsdp_ckpt_kwargs():
return {}


def _init_fsdp(model, accelerator, device):
"""
Initialize Fully Sharded Data Parallel (FSDP) for the model.
This function is needed to properly initialize FSDP when resuming from a checkpoint.
It runs a forward pass with dummy inputs to ensure FSDP is fully initialized.
See https://github.com/huggingface/transformers/issues/31892 for more details.
Args:
model: The model to initialize with FSDP.
accelerator: The Accelerator object.
device: The device to run the model on.
Returns:
The initialized FSDP model.
"""
model = accelerator.prepare(model)
model.train()
with torch.no_grad():
# Run a forward pass with dummy inputs to initialize FSDP
dummy_input = {
name: torch.ones(
(1, 512),
dtype=torch.long,
device=device,
)
for name in model.forward.__code__.co_varnames
if name != "self"
}
_ = model(**dummy_input)
return model


if TYPE_CHECKING:
import optuna

Expand Down Expand Up @@ -634,10 +601,6 @@ def __init__(
" `Trainer`. Make sure the lines `import torch_xla.core.xla_model as xm` and"
" `model.to(xm.xla_device())` is performed before the optimizer creation in your script."
)

if self.is_fsdp_enabled:
self.model = _init_fsdp(self.model, self.accelerator, self.args.device)

if (self.is_fsdp_xla_enabled or self.is_fsdp_enabled) and (
self.optimizer is not None or self.lr_scheduler is not None
):
Expand Down
31 changes: 0 additions & 31 deletions tests/trainer/test_trainer.py
Original file line number Diff line number Diff line change
Expand Up @@ -4914,34 +4914,3 @@ def test_get_optimizer_group(self):
param = next(model.parameters())
group = trainer.get_optimizer_group(param)
self.assertIn(param, group["params"])


@require_torch_gpu
@require_torch
@require_accelerate
class TestFSDPInitialization(unittest.TestCase):
def test_fsdp_initialization(self):
config = RegressionModelConfig(a=1, b=1, double_output=False)
model = RegressionPreTrainedModel(config)

with tempfile.TemporaryDirectory() as tmp_dir:
training_args = TrainingArguments(
output_dir=tmp_dir,
fsdp=True,
fsdp_config={"min_num_params": 1},
no_cuda=True,
)
trainer = Trainer(model=model, args=training_args)

# Check for FSDP enabled
self.assertTrue(trainer.is_fsdp_enabled)

# Check if model is wrapped with FSDP
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP

self.assertTrue(trainer.model, FSDP)

# Running a forward pass to ensure FSDP is initialized
dummy_input = torch.ones((1, 1), dtype=torch.float)
output = trainer.model(dummy_input)
self.assertTrue(output)

0 comments on commit 3f06f95

Please sign in to comment.