Skip to content

Pytorch Unofficial Implementation "Cross-Domain Style Mixing for Face Cartoonization"

Notifications You must be signed in to change notification settings

hyoseok1223/CDSM

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

12 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Cross-Domain Style Mixing for Face Cartoonization

Overview

Mark Kim   ·   Jihye Back   ·   Namhyuk Ahn   ·   Kwangho Lee
Project Page: English | 한국어 | WebtoonMe demo

🚧 🔧 🛠️ 👷

Now you can experience the demo app for image translation. Stay tuned for the video version let alone more Webtoon characters!😎

Also check out our paper, "Cross-Domain Style Mixing for Face Cartoonization" , specifically built for this project. image



Table of Contents

Getting Started

Paper List for CDSM Implementation and Understanding

Some Paper lists for understanding CDSM Paper specific parts

Dependencies and Installation

Recommend running this repository using Anaconda.

  • NVIDIA GPU + CUDA CuDNN
  • Python 3
  • Pytorch
  • Ninja
$ conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch # Check Cuda version and install  proper version Torch
$ conda install Ninja  # must install conda ( easy way )



Preparation

Preparing Webtoon Dataset

Paper use crawled webtoon dataset and iCartoonFace, but this repo use only webtoon data. you can collect webtoon data from bryandlee/naver-webtoon-data ( you can change collected dataset resolution by SRCNN, I set 1024x1024 same with paper )

Preparing Generator

Before do CDSM, you must prepare 2 stylegan2 generator. First is Pretrained Source Domain Stylegan2 Generator ( here is FFHQ pretrained ). Second is Fine-Tunned Target Domain Stylegan2 Generator. ( here is fine tunned by webtoon dataset) you can training and fine-tunning stylegan2 at rosinality/stylegan2-pytorch .

Preparing Restyle Encoder

We need 2 GAN Inversion Models( Encoder ) each source domain and target domain. you can training each Restyle Encoder from yuval-alaluf/restyle-encoder. ( paper use restlye encoder. ) We already have each domain stylegan2 generator. So we use these two generator for training each domain Restyle Encoder. ( --stylegan_weights )

Pretrained_Weights

Path Description
FFHQ StyleGAN StyleGAN2 model trained on FFHQ with 1024x1024 output resolution.
Webtoon_StyleGAN StyleGAN2 model trained on Webtoon Dataset with 1024x1024 output resolution. ( Yet not prepared )
FFHQ - ReStyle + pSp ReStyle applied over pSp trained on the FFHQ dataset.
Webtoon - ReStyle + pSp ReStyle applied over pSp trained on the Webtoon Dataset. ( Yet not prepared )



Generation

This Repository follow overall code process from yuval-alaluf/restyle-encoder. Because CDSM Paper use Restyle Encoder and CDSM can be implemented in Generator Process. ( So I reconstruct main.py, gan_inversion.py and models/stylegan2/model.py . )

Generation CDSM Usage

usage: python main.py [-h] [--exp_dir EXP_DIR] [--checkpoint_path CHECKPOINT_PATH] [--data_path DATA_PATH] [--resize_outputs] [--test_batch_size TEST_BATCH_SIZE] [--test_workers TEST_WORKERS] [--n_images N_IMAGES]
               [--n_iters_per_batch N_ITERS_PER_BATCH] [--model_1_checkpoint_path MODEL_1_CHECKPOINT_PATH] [--model_2_checkpoint_path MODEL_2_CHECKPOINT_PATH] [--edit_directions EDIT_DIRECTIONS] [--factor_ranges FACTOR_RANGES]
               [--source_checkpoint_path SOURCE_CHECKPOINT_PATH] [--target_checkpoint_path TARGET_CHECKPOINT_PATH] [--load_numpy] [--m M][--k_sampling K_SAMPLING] [--layer_swap_resolution LAYER_SWAP_RESOLUTION] [--out_path OUT_PATH]

options:
  -h, --help            show this help message and exit
  --exp_dir EXP_DIR     Path to experiment output directory
  --checkpoint_path CHECKPOINT_PATH
                        Path to ReStyle model checkpoint
  --data_path DATA_PATH
                        Path to directory of images to evaluate
  --resize_outputs      Whether to resize outputs to 256x256 or keep at original output resolution
  --test_batch_size TEST_BATCH_SIZE
                        Batch size for testing and inference
  --test_workers TEST_WORKERS
                        Number of test/inference dataloader workers
  --n_images N_IMAGES   Number of images to output. If None, run on all data
  --n_iters_per_batch N_ITERS_PER_BATCH
                        Number of forward passes per batch during training.
  --model_1_checkpoint_path MODEL_1_CHECKPOINT_PATH
                        Path to encoder used to initialize encoder bootstrapping inference.
  --model_2_checkpoint_path MODEL_2_CHECKPOINT_PATH
                        Path to encoder used to iteratively translate images following model 1's initialization.
  --edit_directions EDIT_DIRECTIONS
                        comma-separated list of which edit directions top perform.
  --factor_ranges FACTOR_RANGES
                        comma-separated list of max ranges for each corresponding edit.
  --source_checkpoint_path SOURCE_CHECKPOINT_PATH
                        source domain trained checkpoint path
  --target_checkpoint_path TARGET_CHECKPOINT_PATH
                        target domain trained checkpoint path
  --load_numpy          load latent codes from npy files
  --m                Style mixing level which is W+ layer index
  --k_sampling K_SAMPLING
                        Random k( default : 50) sampling from specific character ID cartoon dataset
  --layer_swap_resolution LAYER_SWAP_RESOLUTION
                        resolution level which is swapped to fine-tunned generator
  --out_path OUT_PATH   out image path

Example Generation Command

python main.py --exp_dir=./experiment/[YOUR EXP PATH] --source_checkpoint_paht=SRC_CKPT_PATH --target_checkpoint_paht=TAR_CKPT_PATH --target_data_path=[CHARACTER DATA PATH}

Additional Implementation Check for CDSM

  • you can check gan inversion in gan_inversion.py
  • you can check Layer Swapping, TRGB Replacement and Style Mixing in main.py
  • you can check , Style Space Details( example S_tRGB) in models/stylegan2/model.py

Results

Implementation Result

TODO

  • Lookup table which has various character ID preparing
  • Gradio or Streamlit Demo
  • Better Codes for experiments

References

About

Pytorch Unofficial Implementation "Cross-Domain Style Mixing for Face Cartoonization"

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published