Skip to content

instant-replay-academy/MLB-PitchFx-Python

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Wrangling MLB PitchFx Data in Python

IMAGE ALT TEXT HERE

A full walk-through of this project is offered as a free course on Udemy.com at:

https://www.udemy.com/wrangling-mlb-pitchfx-data-with-python

In the 2006 playoffs, Major League Baseball debuted a pitch tracking camera system called PitchF/x. Now installed in every MLB stadium, the system has been continually extended and re-branded. From cameras to TrackMan radar, from StatCast, to GameDay – MLB now tracks every pitch and every player's movement on each pitch. The data are made public on the MLB web site and SaberMetricians world-wide pour over every detail. The teams themselves, average five or more statisticians dedicated to analyzing the data to aid in selecting and improving players.

I'm Chaz Henry – a software engineer, 12 year little league coach and founder of the PowerChalk dot com website. In this class, we're going to open a fresh Jupyter Notebook, grab the MLB game data from Clayton Kershaw's 2014 no-hitter and wrangle that data in Python. It's an introduction in SaberMetrics - the empirical study of baseball statistics.

We'll use built-in Python libraries and graph the pitches with MatPlotLib and PyPlot. Along the way we'll talk about best practices for Jupyter Notebook, Python coding, XML parsing and maybe a little baseball.

So, if you're a coder, a SaberMetrician or a just a baseball fan who wants to peek behind the curtain at what's driving MoneyBall and the next wave of player development, sign up for the course and let's start scrubbing the pitch data from one of the greatest pitching performances in MLB history.

About

Wrangling MLB PitchFx Data in Python

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published