Skip to content

Commit

Permalink
Figures
Browse files Browse the repository at this point in the history
  • Loading branch information
sizzziy committed Sep 24, 2024
1 parent 3ad757b commit 37c2327
Show file tree
Hide file tree
Showing 5 changed files with 48 additions and 45 deletions.
35 changes: 18 additions & 17 deletions paper/Divilkovskiy2024SourceSpace_en.aux
Original file line number Diff line number Diff line change
Expand Up @@ -55,25 +55,26 @@
\abx@aux@segm{0}{0}{jadon2022comprehensive}
\@writefile{toc}{\contentsline {section}{\numberline {1}Introduction}{2}{section.1}\protected@file@percent }
\@writefile{toc}{\contentsline {section}{\numberline {2}Point-wise prediction of a set of time series}{3}{section.2}\protected@file@percent }
\@writefile{toc}{\contentsline {section}{\numberline {3}Reconstruction by a predicted distance matrix}{3}{section.3}\protected@file@percent }
\@writefile{toc}{\contentsline {section}{\numberline {3}Reconstruction of time series by a predicted distance matrix}{3}{section.3}\protected@file@percent }
\newlabel{minimization}{{{\textasteriskcentered }}{4}{Reconstruction of time series by a predicted distance matrix}{AMS.1}{}}
\@writefile{toc}{\contentsline {section}{\numberline {4}Existence of several values of a series satisfying same distance matrix}{4}{section.4}\protected@file@percent }
\citation{MDS}
\abx@aux@cite{0}{MDS}
\abx@aux@segm{0}{0}{MDS}
\citation{inbook}
\abx@aux@cite{0}{inbook}
\abx@aux@segm{0}{0}{inbook}
\@writefile{lof}{\contentsline {figure}{\numberline {1}{\ignorespaces These sets of time series have the same distance matrix constructed on the Euclidean metric.\relax }}{6}{figure.caption.1}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {1}{\ignorespaces These sets of time series have the same distance matrix constructed on the Euclidean metric.\relax }}{6}{figure.caption.2}\protected@file@percent }
\providecommand*\caption@xref[2]{\@setref\relax\@undefined{#1}}
\newlabel{fig:fig1}{{1}{6}{These sets of time series have the same distance matrix constructed on the Euclidean metric.\relax }{figure.caption.1}{}}
\newlabel{fig:fig1}{{1}{6}{These sets of time series have the same distance matrix constructed on the Euclidean metric.\relax }{figure.caption.2}{}}
\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {Reference functions}}}{6}{subfigure.1.1}\protected@file@percent }
\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {Modified functions where 3 is subtracted from the last values}}}{6}{subfigure.1.2}\protected@file@percent }
\citation{puchkin2023sharper}
\abx@aux@cite{0}{puchkin2023sharper}
\abx@aux@segm{0}{0}{puchkin2023sharper}
\@writefile{toc}{\contentsline {section}{\numberline {5}Pairwise correlation between time series}{7}{section.5}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {2}{\ignorespaces Function $||\hat {\mathbf {\Sigma }}_{t+1} - \bar {\mathbf {\Sigma }}_{t+1}||_2^2$ for following series: $(1, 3)$ and $(2, 4)$. Minumums: (3; 4) is desired and (-1; 0) is alternative.\relax }}{10}{figure.caption.2}\protected@file@percent }
\newlabel{fig:fig2}{{2}{10}{Function $||\hat {\mathbf {\Sigma }}_{t+1} - \bar {\mathbf {\Sigma }}_{t+1}||_2^2$ for following series: $(1, 3)$ and $(2, 4)$. Minumums: (3; 4) is desired and (-1; 0) is alternative.\relax }{figure.caption.2}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {2}{\ignorespaces Function $||\hat {\mathbf {\Sigma }}_{t+1} - \bar {\mathbf {\Sigma }}_{t+1}||_2^2$ for following series: $(1, 3)$ and $(2, 4)$. Minumums: (3; 4) is desired and (-1; 0) is alternative.\relax }}{10}{figure.caption.3}\protected@file@percent }
\newlabel{fig:fig2}{{2}{10}{Function $||\hat {\mathbf {\Sigma }}_{t+1} - \bar {\mathbf {\Sigma }}_{t+1}||_2^2$ for following series: $(1, 3)$ and $(2, 4)$. Minumums: (3; 4) is desired and (-1; 0) is alternative.\relax }{figure.caption.3}{}}
\citation{mikhalevich2024methodsnonconvexoptimization}
\abx@aux@cite{0}{mikhalevich2024methodsnonconvexoptimization}
\abx@aux@segm{0}{0}{mikhalevich2024methodsnonconvexoptimization}
Expand All @@ -85,19 +86,19 @@
\citation{haoyietal-informer-2021}
\abx@aux@cite{0}{haoyietal-informer-2021}
\abx@aux@segm{0}{0}{haoyietal-informer-2021}
\@writefile{lof}{\contentsline {figure}{\numberline {3}{\ignorespaces Prediction recovery in case of accurate prediction of correlation matrix $\mathbf {\Sigma }$. $T=20$, $T^\prime =10$\relax }}{15}{figure.caption.3}\protected@file@percent }
\newlabel{fig:fig3}{{3}{15}{Prediction recovery in case of accurate prediction of correlation matrix $\mathbf {\Sigma }$. $T=20$, $T^\prime =10$\relax }{figure.caption.3}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4}{\ignorespaces Prediction reconstruction in case of inaccurate correlation matrix $\mathbf {\Sigma }$ prediction. In addition to the prediction error caused by noise in the correlation matrix a new type of error is added. When selecting a set, it is possible that the diameter is minimised not at the right set, as this is only a necessary condition, but not a sufficient one.\relax }}{16}{figure.caption.4}\protected@file@percent }
\newlabel{fig:fig4}{{4}{16}{Prediction reconstruction in case of inaccurate correlation matrix $\mathbf {\Sigma }$ prediction. In addition to the prediction error caused by noise in the correlation matrix a new type of error is added. When selecting a set, it is possible that the diameter is minimised not at the right set, as this is only a necessary condition, but not a sufficient one.\relax }{figure.caption.4}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3}{\ignorespaces Prediction recovery in case of accurate prediction of correlation matrix $\mathbf {\Sigma }$. $T=20$, $T^\prime =10$\relax }}{15}{figure.caption.4}\protected@file@percent }
\newlabel{fig:fig3}{{3}{15}{Prediction recovery in case of accurate prediction of correlation matrix $\mathbf {\Sigma }$. $T=20$, $T^\prime =10$\relax }{figure.caption.4}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4}{\ignorespaces Prediction reconstruction in case of inaccurate correlation matrix $\mathbf {\Sigma }$ prediction. In addition to the prediction error caused by noise in the correlation matrix a new type of error is added. When selecting a set, it is possible that the diameter is minimised not at the right set, as this is only a necessary condition, but not a sufficient one.\relax }}{16}{figure.caption.5}\protected@file@percent }
\newlabel{fig:fig4}{{4}{16}{Prediction reconstruction in case of inaccurate correlation matrix $\mathbf {\Sigma }$ prediction. In addition to the prediction error caused by noise in the correlation matrix a new type of error is added. When selecting a set, it is possible that the diameter is minimised not at the right set, as this is only a necessary condition, but not a sufficient one.\relax }{figure.caption.5}{}}
\@writefile{toc}{\contentsline {section}{\numberline {8}Experiment}{17}{section.8}\protected@file@percent }
\@writefile{toc}{\contentsline {paragraph}{Synthetic data.}{17}{section*.5}\protected@file@percent }
\@writefile{lot}{\contentsline {table}{\numberline {1}{\ignorespaces Loss on synthetic data. As expected, the error is less on bigger $K$ value. See \ref {fig:fig5} for the example of reconstruction with $K=10$ and noise $\mathcal {N}(0, 0.05)$.\relax }}{17}{table.caption.6}\protected@file@percent }
\@writefile{toc}{\contentsline {paragraph}{Electricity Transformer Temperature}{17}{section*.8}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {5}{\ignorespaces Synthetic data reconstruction plot at $K=10$, Additional noise $\mathcal {N}(0, 0.05)$. \textbf {MAE: 0.116, MSE: 0.025}\relax }}{18}{figure.caption.7}\protected@file@percent }
\newlabel{fig:fig5}{{5}{18}{Synthetic data reconstruction plot at $K=10$, Additional noise $\mathcal {N}(0, 0.05)$. \textbf {MAE: 0.116, MSE: 0.025}\relax }{figure.caption.7}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {6}{\ignorespaces ETTh1 data reconstruction plot at $K=10$, Additional Noise $\mathcal {N}(0, 0.05)$. \textbf {MAE: 0.096, MSE: 0.019}\relax }}{18}{figure.caption.9}\protected@file@percent }
\newlabel{fig:fig6}{{6}{18}{ETTh1 data reconstruction plot at $K=10$, Additional Noise $\mathcal {N}(0, 0.05)$. \textbf {MAE: 0.096, MSE: 0.019}\relax }{figure.caption.9}{}}
\@writefile{lot}{\contentsline {table}{\numberline {2}{\ignorespaces Loss on ETTh1 data. The same dependence of the error on the value of $K$ as on the synthetic data can be seen. See \ref {fig:fig6} for the example of reconstruction with $K=10$ and noise $\mathcal {N}(0, 0.05)$.\relax }}{19}{table.caption.10}\protected@file@percent }
\@writefile{toc}{\contentsline {paragraph}{Synthetic data.}{17}{section*.6}\protected@file@percent }
\@writefile{lot}{\contentsline {table}{\numberline {1}{\ignorespaces Loss on synthetic data. As expected, the error is less on bigger $K$ value. See \ref {fig:fig5} for the example of reconstruction with $K=10$ and noise $\mathcal {N}(0, 0.05)$.\relax }}{17}{table.caption.7}\protected@file@percent }
\@writefile{toc}{\contentsline {paragraph}{Electricity Transformer Temperature}{17}{section*.9}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {5}{\ignorespaces Synthetic data reconstruction plot at $K=10$, Additional noise $\mathcal {N}(0, 0.05)$. \textbf {MAE: 0.116, MSE: 0.025}\relax }}{18}{figure.caption.8}\protected@file@percent }
\newlabel{fig:fig5}{{5}{18}{Synthetic data reconstruction plot at $K=10$, Additional noise $\mathcal {N}(0, 0.05)$. \textbf {MAE: 0.116, MSE: 0.025}\relax }{figure.caption.8}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {6}{\ignorespaces ETTh1 data reconstruction plot at $K=10$, Additional Noise $\mathcal {N}(0, 0.05)$. \textbf {MAE: 0.096, MSE: 0.019}\relax }}{18}{figure.caption.10}\protected@file@percent }
\newlabel{fig:fig6}{{6}{18}{ETTh1 data reconstruction plot at $K=10$, Additional Noise $\mathcal {N}(0, 0.05)$. \textbf {MAE: 0.096, MSE: 0.019}\relax }{figure.caption.10}{}}
\@writefile{lot}{\contentsline {table}{\numberline {2}{\ignorespaces Loss on ETTh1 data. The same dependence of the error on the value of $K$ as on the synthetic data can be seen. See \ref {fig:fig6} for the example of reconstruction with $K=10$ and noise $\mathcal {N}(0, 0.05)$.\relax }}{19}{table.caption.11}\protected@file@percent }
\@writefile{toc}{\contentsline {section}{\numberline {9}Conclusion}{19}{section.9}\protected@file@percent }
\abx@aux@read@bbl@mdfivesum{91866767D1410037C63D7B7AEF9F2D97}
\abx@aux@defaultrefcontext{0}{LSTM}{none/global//global/global}
Expand Down
2 changes: 1 addition & 1 deletion paper/Divilkovskiy2024SourceSpace_en.out
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
\BOOKMARK [1][-]{section.1}{\376\377\000I\000n\000t\000r\000o\000d\000u\000c\000t\000i\000o\000n}{}% 1
\BOOKMARK [1][-]{section.2}{\376\377\000P\000o\000i\000n\000t\000-\000w\000i\000s\000e\000\040\000p\000r\000e\000d\000i\000c\000t\000i\000o\000n\000\040\000o\000f\000\040\000a\000\040\000s\000e\000t\000\040\000o\000f\000\040\000t\000i\000m\000e\000\040\000s\000e\000r\000i\000e\000s}{}% 2
\BOOKMARK [1][-]{section.3}{\376\377\000R\000e\000c\000o\000n\000s\000t\000r\000u\000c\000t\000i\000o\000n\000\040\000b\000y\000\040\000a\000\040\000p\000r\000e\000d\000i\000c\000t\000e\000d\000\040\000d\000i\000s\000t\000a\000n\000c\000e\000\040\000m\000a\000t\000r\000i\000x}{}% 3
\BOOKMARK [1][-]{section.3}{\376\377\000R\000e\000c\000o\000n\000s\000t\000r\000u\000c\000t\000i\000o\000n\000\040\000o\000f\000\040\000t\000i\000m\000e\000\040\000s\000e\000r\000i\000e\000s\000\040\000b\000y\000\040\000a\000\040\000p\000r\000e\000d\000i\000c\000t\000e\000d\000\040\000d\000i\000s\000t\000a\000n\000c\000e\000\040\000m\000a\000t\000r\000i\000x}{}% 3
\BOOKMARK [1][-]{section.4}{\376\377\000E\000x\000i\000s\000t\000e\000n\000c\000e\000\040\000o\000f\000\040\000s\000e\000v\000e\000r\000a\000l\000\040\000v\000a\000l\000u\000e\000s\000\040\000o\000f\000\040\000a\000\040\000s\000e\000r\000i\000e\000s\000\040\000s\000a\000t\000i\000s\000f\000y\000i\000n\000g\000\040\000s\000a\000m\000e\000\040\000d\000i\000s\000t\000a\000n\000c\000e\000\040\000m\000a\000t\000r\000i\000x}{}% 4
\BOOKMARK [1][-]{section.5}{\376\377\000P\000a\000i\000r\000w\000i\000s\000e\000\040\000c\000o\000r\000r\000e\000l\000a\000t\000i\000o\000n\000\040\000b\000e\000t\000w\000e\000e\000n\000\040\000t\000i\000m\000e\000\040\000s\000e\000r\000i\000e\000s}{}% 5
\BOOKMARK [1][-]{section.6}{\376\377\000A\000l\000g\000o\000r\000i\000t\000h\000m\000\040\000f\000o\000r\000\040\000r\000e\000c\000o\000n\000s\000t\000r\000u\000c\000t\000i\000n\000g\000\040\000t\000i\000m\000e\000\040\000s\000e\000r\000i\000e\000s\000\040\000v\000a\000l\000u\000e\000s\000\040\000i\000n\000\040\000c\000a\000s\000e\000\040\000o\000f\000\040\000a\000c\000c\000u\000r\000a\000t\000e\000\040\000p\000r\000e\000d\000i\000c\000t\000i\000o\000n\000\040\000o\000f\000\040\000t\000h\000e\000\040\000m\000a\000t\000r\000i\000x}{}% 6
Expand Down
Binary file modified paper/Divilkovskiy2024SourceSpace_en.pdf
Binary file not shown.
Binary file modified paper/Divilkovskiy2024SourceSpace_en.synctex.gz
Binary file not shown.
Loading

0 comments on commit 37c2327

Please sign in to comment.