Skip to content

Commit

Permalink
Rewrite
Browse files Browse the repository at this point in the history
  • Loading branch information
sizzziy committed Nov 10, 2024
1 parent 41e1905 commit 815b89a
Show file tree
Hide file tree
Showing 8 changed files with 195 additions and 172 deletions.
4 changes: 2 additions & 2 deletions paper/Divilkovskiy2024SourceSpace_en-blx.bib
Original file line number Diff line number Diff line change
@@ -1,11 +1,11 @@
@Comment{$ biblatex control file $}
@Comment{$ biblatex bcf format version 3.10 $}
@Comment{$ biblatex bcf format version 3.8 $}
% Do not modify this file!
%
% This is an auxiliary file used by the 'biblatex' package.
% This file may safely be deleted. It will be recreated as
% required.
@Control{biblatex-control,
options = {3.10:0:0:1:0:1:1:0:0:0:0:0:3:1:3:1:0:0:3:1:79:+:+:none},
options = {3.8:0:0:1:0:1:1:0:0:0:0:0:3:1:3:1:0:0:3:1:79:+:+:none},
}
69 changes: 37 additions & 32 deletions paper/Divilkovskiy2024SourceSpace_en.aux
Original file line number Diff line number Diff line change
@@ -1,15 +1,18 @@
\relax
\providecommand\hyper@newdestlabel[2]{}
\bibstyle{biblatex}
\bibdata{Divilkovskiy2024SourceSpace_en-blx,references}
\citation{biblatex-control}
\abx@aux@refcontext{none/global//global/global}
\providecommand\hyper@newdestlabel[2]{}
\providecommand\HyperFirstAtBeginDocument{\AtBeginDocument}
\HyperFirstAtBeginDocument{\ifx\hyper@anchor\@undefined
\global\let\oldcontentsline\contentsline
\gdef\contentsline#1#2#3#4{\oldcontentsline{#1}{#2}{#3}}
\global\let\oldnewlabel\newlabel
\gdef\newlabel#1#2{\newlabelxx{#1}#2}
\gdef\newlabelxx#1#2#3#4#5#6{\oldnewlabel{#1}{{#2}{#3}}}
\AtEndDocument{\ifx\hyper@anchor\@undefined
\let\contentsline\oldcontentsline
\let\newlabel\oldnewlabel
\fi}
\fi}
Expand Down Expand Up @@ -50,6 +53,12 @@
\citation{zhang2023crossformer}
\abx@aux@cite{0}{zhang2023crossformer}
\abx@aux@segm{0}{0}{zhang2023crossformer}
\citation{puchkin2023sharper}
\abx@aux@cite{0}{puchkin2023sharper}
\abx@aux@segm{0}{0}{puchkin2023sharper}
\citation{mikhalevich2024methodsnonconvexoptimization}
\abx@aux@cite{0}{mikhalevich2024methodsnonconvexoptimization}
\abx@aux@segm{0}{0}{mikhalevich2024methodsnonconvexoptimization}
\citation{jadon2022comprehensive}
\abx@aux@cite{0}{jadon2022comprehensive}
\abx@aux@segm{0}{0}{jadon2022comprehensive}
Expand All @@ -61,46 +70,42 @@
\abx@aux@cite{0}{inbook}
\abx@aux@segm{0}{0}{inbook}
\@writefile{toc}{\contentsline {section}{\numberline {2}Point-wise prediction of a set of time series}{3}{section.2}\protected@file@percent }
\newlabel{loss}{{{*}}{3}{Point-wise prediction of a set of time series}{AMS.1}{}}
\@writefile{toc}{\contentsline {section}{\numberline {3}Reconstruction of time series by a predicted distance matrix}{4}{section.3}\protected@file@percent }
\newlabel{minimization}{{{1}}{4}{Reconstruction of time series by a predicted distance matrix}{AMS.1}{}}
\newlabel{minimization}{{{1}}{4}{Reconstruction of time series by a predicted distance matrix}{AMS.2}{}}
\@writefile{toc}{\contentsline {section}{\numberline {4}Existence of several values of a series satisfying same distance matrix}{4}{section.4}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {1}{\ignorespaces These sets of time series have the same distance matrix constructed on the Euclidean metric.\relax }}{6}{figure.caption.2}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {1}{\ignorespaces These sets of time series have the same distance matrix constructed on the Euclidean metric.\relax }}{6}{figure.caption.3}\protected@file@percent }
\providecommand*\caption@xref[2]{\@setref\relax\@undefined{#1}}
\newlabel{fig:fig1}{{1}{6}{These sets of time series have the same distance matrix constructed on the Euclidean metric.\relax }{figure.caption.2}{}}
\newlabel{fig:fig1}{{1}{6}{These sets of time series have the same distance matrix constructed on the Euclidean metric.\relax }{figure.caption.3}{}}
\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {Reference functions}}}{6}{subfigure.1.1}\protected@file@percent }
\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {Modified functions where 3 is subtracted from the last values}}}{6}{subfigure.1.2}\protected@file@percent }
\citation{puchkin2023sharper}
\abx@aux@cite{0}{puchkin2023sharper}
\abx@aux@segm{0}{0}{puchkin2023sharper}
\@writefile{toc}{\contentsline {section}{\numberline {5}Pairwise correlation between time series}{7}{section.5}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {2}{\ignorespaces Function $||\hat {\mathbf {\Sigma }}_{t+1} - \bar {\mathbf {\Sigma }}_{t+1}||_2^2$ for following series: $(1, 3)$ and $(2, 4)$. Minumums: (3; 4) is desired and (-1; 0) is alternative.\relax }}{10}{figure.caption.3}\protected@file@percent }
\newlabel{fig:fig2}{{2}{10}{Function $||\hat {\mathbf {\Sigma }}_{t+1} - \bar {\mathbf {\Sigma }}_{t+1}||_2^2$ for following series: $(1, 3)$ and $(2, 4)$. Minumums: (3; 4) is desired and (-1; 0) is alternative.\relax }{figure.caption.3}{}}
\citation{mikhalevich2024methodsnonconvexoptimization}
\abx@aux@cite{0}{mikhalevich2024methodsnonconvexoptimization}
\abx@aux@segm{0}{0}{mikhalevich2024methodsnonconvexoptimization}
\@writefile{toc}{\contentsline {section}{\numberline {6}Algorithm for reconstructing time series values in case of accurate prediction of the matrix}{13}{section.6}\protected@file@percent }
\newlabel{distance_matrix}{{{2}}{7}{Pairwise correlation between time series}{AMS.5}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {2}{\ignorespaces The function $||\hat {\mathbf {\Sigma }}_{t+1} - \bar {\mathbf {\Sigma }}_{t+1}||_2^2$ for the following series: $(1, 3)$ and $(2, 4)$. Minumums: (3; 4) is desired and (-1; 0) is an alternative.\relax }}{10}{figure.caption.6}\protected@file@percent }
\newlabel{fig:fig2}{{2}{10}{The function $||\hat {\mathbf {\Sigma }}_{t+1} - \bar {\mathbf {\Sigma }}_{t+1}||_2^2$ for the following series: $(1, 3)$ and $(2, 4)$. Minumums: (3; 4) is desired and (-1; 0) is an alternative.\relax }{figure.caption.6}{}}
\@writefile{toc}{\contentsline {section}{\numberline {6}Correlation-based Algorithm for reconstructing time series values in case of accurate matrix prediction}{13}{section.6}\protected@file@percent }
\citation{HIGHAM1988103}
\abx@aux@cite{0}{HIGHAM1988103}
\abx@aux@segm{0}{0}{HIGHAM1988103}
\@writefile{toc}{\contentsline {section}{\numberline {7}Algorithm for reconstructing time series values in case of inaccurate matrix prediction}{14}{section.7}\protected@file@percent }
\@writefile{toc}{\contentsline {section}{\numberline {7}Correlation-based Algorithm for reconstructing time series values in case of inaccurate matrix prediction}{14}{section.7}\protected@file@percent }
\citation{haoyietal-informer-2021}
\abx@aux@cite{0}{haoyietal-informer-2021}
\abx@aux@segm{0}{0}{haoyietal-informer-2021}
\@writefile{lof}{\contentsline {figure}{\numberline {3}{\ignorespaces Prediction recovery in case of accurate prediction of correlation matrix $\mathbf {\Sigma }$. $T=20$, $T^\prime =10$\relax }}{15}{figure.caption.4}\protected@file@percent }
\newlabel{fig:fig3}{{3}{15}{Prediction recovery in case of accurate prediction of correlation matrix $\mathbf {\Sigma }$. $T=20$, $T^\prime =10$\relax }{figure.caption.4}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4}{\ignorespaces Prediction reconstruction in case of inaccurate correlation matrix $\mathbf {\Sigma }$ prediction. In addition to the prediction error caused by noise in the correlation matrix a new type of error is added. When selecting a set, it is possible that the diameter is minimised not at the right set, as this is only a necessary condition, but not a sufficient one.\relax }}{16}{figure.caption.5}\protected@file@percent }
\newlabel{fig:fig4}{{4}{16}{Prediction reconstruction in case of inaccurate correlation matrix $\mathbf {\Sigma }$ prediction. In addition to the prediction error caused by noise in the correlation matrix a new type of error is added. When selecting a set, it is possible that the diameter is minimised not at the right set, as this is only a necessary condition, but not a sufficient one.\relax }{figure.caption.5}{}}
\@writefile{toc}{\contentsline {section}{\numberline {8}Experiment}{17}{section.8}\protected@file@percent }
\@writefile{toc}{\contentsline {paragraph}{Synthetic data.}{17}{section*.6}\protected@file@percent }
\@writefile{lot}{\contentsline {table}{\numberline {1}{\ignorespaces Loss on synthetic data. As expected, the error is less on bigger $K$ value. See \ref {fig:fig5} for the example of reconstruction with $K=10$ and noise $\mathcal {N}(0, 0.05)$.\relax }}{17}{table.caption.7}\protected@file@percent }
\@writefile{toc}{\contentsline {paragraph}{Electricity Transformer Temperature}{17}{section*.9}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {5}{\ignorespaces Synthetic data reconstruction plot at $K=10$, Additional noise $\mathcal {N}(0, 0.05)$. \textbf {MAE: 0.116, MSE: 0.025}\relax }}{18}{figure.caption.8}\protected@file@percent }
\newlabel{fig:fig5}{{5}{18}{Synthetic data reconstruction plot at $K=10$, Additional noise $\mathcal {N}(0, 0.05)$. \textbf {MAE: 0.116, MSE: 0.025}\relax }{figure.caption.8}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {6}{\ignorespaces ETTh1 data reconstruction plot at $K=10$, Additional Noise $\mathcal {N}(0, 0.05)$. \textbf {MAE: 0.096, MSE: 0.019}\relax }}{18}{figure.caption.10}\protected@file@percent }
\newlabel{fig:fig6}{{6}{18}{ETTh1 data reconstruction plot at $K=10$, Additional Noise $\mathcal {N}(0, 0.05)$. \textbf {MAE: 0.096, MSE: 0.019}\relax }{figure.caption.10}{}}
\@writefile{lot}{\contentsline {table}{\numberline {2}{\ignorespaces Loss on ETTh1 data. The same dependence of the error on the value of $K$ as on the synthetic data can be seen. See \ref {fig:fig6} for the example of reconstruction with $K=10$ and noise $\mathcal {N}(0, 0.05)$.\relax }}{19}{table.caption.11}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {3}{\ignorespaces Prediction recovery in case of accurate prediction of correlation matrix $\mathbf {\Sigma }$, where $T=20$, $T^\prime =10$\relax }}{15}{figure.caption.7}\protected@file@percent }
\newlabel{fig:fig3}{{3}{15}{Prediction recovery in case of accurate prediction of correlation matrix $\mathbf {\Sigma }$, where $T=20$, $T^\prime =10$\relax }{figure.caption.7}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4}{\ignorespaces Prediction reconstruction in case of inaccurate correlation matrix $\mathbf {\Sigma }$ prediction. In addition to the prediction error caused by noise in the correlation matrix a new type of error is added. When selecting a set, it is possible that the diameter is minimised not at the right set, as this is only a necessary condition, but not a sufficient one.\relax }}{16}{figure.caption.8}\protected@file@percent }
\newlabel{fig:fig4}{{4}{16}{Prediction reconstruction in case of inaccurate correlation matrix $\mathbf {\Sigma }$ prediction. In addition to the prediction error caused by noise in the correlation matrix a new type of error is added. When selecting a set, it is possible that the diameter is minimised not at the right set, as this is only a necessary condition, but not a sufficient one.\relax }{figure.caption.8}{}}
\@writefile{toc}{\contentsline {section}{\numberline {8}Computational experiment}{17}{section.8}\protected@file@percent }
\@writefile{toc}{\contentsline {paragraph}{Synthetic data.}{17}{section*.9}\protected@file@percent }
\@writefile{lot}{\contentsline {table}{\numberline {1}{\ignorespaces Error \textup {\hbox {\mathsurround \z@ \normalfont (\ignorespaces \ref {loss}\unskip \@@italiccorr )}} on synthetic data. As expected, the error is less on bigger $K$ value. See Figure \ref {fig:fig5} for the example of reconstruction with $K=10$ and noise $\mathcal {N}(0, 0.05)$.\relax }}{17}{table.caption.10}\protected@file@percent }
\@writefile{toc}{\contentsline {paragraph}{Electricity Transformer Temperature.}{17}{section*.12}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {5}{\ignorespaces Synthetic data reconstruction plot at $K=10$, Additional noise $\mathcal {N}(0, 0.05)$. \mbox {MAE: 0.116, MSE: 0.025}\relax }}{18}{figure.caption.11}\protected@file@percent }
\newlabel{fig:fig5}{{5}{18}{Synthetic data reconstruction plot at $K=10$, Additional noise $\mathcal {N}(0, 0.05)$. \mbox {MAE: 0.116, MSE: 0.025}\relax }{figure.caption.11}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {6}{\ignorespaces ETTh1 data reconstruction plot at $K=10$, Additional Noise $\mathcal {N}(0, 0.05)$. \mbox {MAE: 0.096, MSE: 0.019}\relax }}{18}{figure.caption.13}\protected@file@percent }
\newlabel{fig:fig6}{{6}{18}{ETTh1 data reconstruction plot at $K=10$, Additional Noise $\mathcal {N}(0, 0.05)$. \mbox {MAE: 0.096, MSE: 0.019}\relax }{figure.caption.13}{}}
\@writefile{lot}{\contentsline {table}{\numberline {2}{\ignorespaces Error \textup {\hbox {\mathsurround \z@ \normalfont (\ignorespaces \ref {loss}\unskip \@@italiccorr )}} on ETTh1 data. The same dependence of the error on the value of $K$ as on the synthetic data can be seen. See Figure \ref {fig:fig6} for the example of reconstruction with $K=10$ and noise $\mathcal {N}(0, 0.05)$.\relax }}{19}{table.caption.14}\protected@file@percent }
\@writefile{toc}{\contentsline {section}{\numberline {9}Conclusion}{19}{section.9}\protected@file@percent }
\abx@aux@read@bbl@mdfivesum{91866767D1410037C63D7B7AEF9F2D97}
\abx@aux@read@bbl@mdfivesum{EBF1AAA10F5B3A5F7B0477203E2DF29D}
\abx@aux@defaultrefcontext{0}{LSTM}{none/global//global/global}
\abx@aux@defaultrefcontext{0}{SSA}{none/global//global/global}
\abx@aux@defaultrefcontext{0}{Biosignals}{none/global//global/global}
Expand All @@ -112,11 +117,11 @@
\abx@aux@defaultrefcontext{0}{liu2022pyraformer}{none/global//global/global}
\abx@aux@defaultrefcontext{0}{NIPS2017_3f5ee243}{none/global//global/global}
\abx@aux@defaultrefcontext{0}{zhang2023crossformer}{none/global//global/global}
\abx@aux@defaultrefcontext{0}{puchkin2023sharper}{none/global//global/global}
\abx@aux@defaultrefcontext{0}{mikhalevich2024methodsnonconvexoptimization}{none/global//global/global}
\abx@aux@defaultrefcontext{0}{jadon2022comprehensive}{none/global//global/global}
\abx@aux@defaultrefcontext{0}{MDS}{none/global//global/global}
\abx@aux@defaultrefcontext{0}{inbook}{none/global//global/global}
\abx@aux@defaultrefcontext{0}{puchkin2023sharper}{none/global//global/global}
\abx@aux@defaultrefcontext{0}{mikhalevich2024methodsnonconvexoptimization}{none/global//global/global}
\abx@aux@defaultrefcontext{0}{HIGHAM1988103}{none/global//global/global}
\abx@aux@defaultlabelprefix{0}{LSTM}{}
\abx@aux@defaultlabelprefix{0}{SSA}{}
Expand All @@ -129,10 +134,10 @@
\abx@aux@defaultlabelprefix{0}{liu2022pyraformer}{}
\abx@aux@defaultlabelprefix{0}{NIPS2017_3f5ee243}{}
\abx@aux@defaultlabelprefix{0}{zhang2023crossformer}{}
\abx@aux@defaultlabelprefix{0}{puchkin2023sharper}{}
\abx@aux@defaultlabelprefix{0}{mikhalevich2024methodsnonconvexoptimization}{}
\abx@aux@defaultlabelprefix{0}{jadon2022comprehensive}{}
\abx@aux@defaultlabelprefix{0}{MDS}{}
\abx@aux@defaultlabelprefix{0}{inbook}{}
\abx@aux@defaultlabelprefix{0}{puchkin2023sharper}{}
\abx@aux@defaultlabelprefix{0}{mikhalevich2024methodsnonconvexoptimization}{}
\abx@aux@defaultlabelprefix{0}{HIGHAM1988103}{}
\gdef \@abspage@last{21}
132 changes: 66 additions & 66 deletions paper/Divilkovskiy2024SourceSpace_en.bbl
Original file line number Diff line number Diff line change
Expand Up @@ -498,6 +498,72 @@
\field{year}{2023}
\endentry

\entry{puchkin2023sharper}{misc}{}
\name{author}{3}{}{%
{{hash=PN}{%
family={Puchkin},
familyi={P\bibinitperiod},
given={Nikita},
giveni={N\bibinitperiod},
}}%
{{hash=NF}{%
family={Noskov},
familyi={N\bibinitperiod},
given={Fedor},
giveni={F\bibinitperiod},
}}%
{{hash=SV}{%
family={Spokoiny},
familyi={S\bibinitperiod},
given={Vladimir},
giveni={V\bibinitperiod},
}}%
}
\strng{namehash}{PNNFSV1}
\strng{fullhash}{PNNFSV1}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\verb{doi}
\verb 10.48550/arXiv.2308.14739
\endverb
\field{title}{Sharper dimension-free bounds on the Frobenius distance
between sample covariance and its expectation}
\field{year}{2023}
\endentry

\entry{mikhalevich2024methodsnonconvexoptimization}{misc}{}
\name{author}{3}{}{%
{{hash=MVS}{%
family={Mikhalevich},
familyi={M\bibinitperiod},
given={V.\bibnamedelima S.},
giveni={V\bibinitperiod\bibinitdelim S\bibinitperiod},
}}%
{{hash=GAM}{%
family={Gupal},
familyi={G\bibinitperiod},
given={A.\bibnamedelima M.},
giveni={A\bibinitperiod\bibinitdelim M\bibinitperiod},
}}%
{{hash=NVI}{%
family={Norkin},
familyi={N\bibinitperiod},
given={V.\bibnamedelima I.},
giveni={V\bibinitperiod\bibinitdelim I\bibinitperiod},
}}%
}
\strng{namehash}{MVSGAMNVI1}
\strng{fullhash}{MVSGAMNVI1}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\verb{doi}
\verb 10.48550/arXiv.2406.10406
\endverb
\field{title}{Methods of Nonconvex Optimization}
\field{eprintclass}{math.OC}
\field{year}{2024}
\endentry

\entry{jadon2022comprehensive}{misc}{}
\name{author}{3}{}{%
{{hash=JA}{%
Expand Down Expand Up @@ -587,72 +653,6 @@
\field{year}{2021}
\endentry

\entry{puchkin2023sharper}{misc}{}
\name{author}{3}{}{%
{{hash=PN}{%
family={Puchkin},
familyi={P\bibinitperiod},
given={Nikita},
giveni={N\bibinitperiod},
}}%
{{hash=NF}{%
family={Noskov},
familyi={N\bibinitperiod},
given={Fedor},
giveni={F\bibinitperiod},
}}%
{{hash=SV}{%
family={Spokoiny},
familyi={S\bibinitperiod},
given={Vladimir},
giveni={V\bibinitperiod},
}}%
}
\strng{namehash}{PNNFSV1}
\strng{fullhash}{PNNFSV1}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\verb{doi}
\verb 10.48550/arXiv.2308.14739
\endverb
\field{title}{Sharper dimension-free bounds on the Frobenius distance
between sample covariance and its expectation}
\field{year}{2023}
\endentry

\entry{mikhalevich2024methodsnonconvexoptimization}{misc}{}
\name{author}{3}{}{%
{{hash=MVS}{%
family={Mikhalevich},
familyi={M\bibinitperiod},
given={V.\bibnamedelima S.},
giveni={V\bibinitperiod\bibinitdelim S\bibinitperiod},
}}%
{{hash=GAM}{%
family={Gupal},
familyi={G\bibinitperiod},
given={A.\bibnamedelima M.},
giveni={A\bibinitperiod\bibinitdelim M\bibinitperiod},
}}%
{{hash=NVI}{%
family={Norkin},
familyi={N\bibinitperiod},
given={V.\bibnamedelima I.},
giveni={V\bibinitperiod\bibinitdelim I\bibinitperiod},
}}%
}
\strng{namehash}{MVSGAMNVI1}
\strng{fullhash}{MVSGAMNVI1}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\verb{doi}
\verb 10.48550/arXiv.2406.10406
\endverb
\field{title}{Methods of Nonconvex Optimization}
\field{eprintclass}{math.OC}
\field{year}{2024}
\endentry

\entry{HIGHAM1988103}{article}{}
\name{author}{1}{}{%
{{hash=HNJ}{%
Expand Down
Loading

0 comments on commit 815b89a

Please sign in to comment.