Skip to content

Commit

Permalink
Refactor
Browse files Browse the repository at this point in the history
  • Loading branch information
sizzziy committed Sep 16, 2024
1 parent 80c827e commit eda4881
Show file tree
Hide file tree
Showing 9 changed files with 2,670 additions and 286 deletions.
101 changes: 47 additions & 54 deletions paper/Divilkovskiy2024SourceSpace_en.aux
Original file line number Diff line number Diff line change
@@ -1,16 +1,11 @@
\relax
\providecommand\hyper@newdestlabel[2]{}
\providecommand\babel@aux[2]{}
\@nameuse{bbl@beforestart}
\providecommand\HyperFirstAtBeginDocument{\AtBeginDocument}
\HyperFirstAtBeginDocument{\ifx\hyper@anchor\@undefined
\global\let\oldcontentsline\contentsline
\gdef\contentsline#1#2#3#4{\oldcontentsline{#1}{#2}{#3}}
\global\let\oldnewlabel\newlabel
\gdef\newlabel#1#2{\newlabelxx{#1}#2}
\gdef\newlabelxx#1#2#3#4#5#6{\oldnewlabel{#1}{{#2}{#3}}}
\AtEndDocument{\ifx\hyper@anchor\@undefined
\let\contentsline\oldcontentsline
\let\newlabel\oldnewlabel
\fi}
\fi}
Expand All @@ -23,67 +18,65 @@
\citation{Biosignals}
\citation{boyd2017multiperiod}
\citation{MulticorrelatedQuadratic}
\babel@aux{english}{}
\@writefile{toc}{\contentsline {section}{\numberline {1}Introduction}{1}{section.1}\protected@file@percent }
\citation{haoyietal-informer-2021}
\citation{haoyietal-informerEx-2023}
\citation{wu2021autoformer}
\citation{liu2022pyraformer}
\citation{NIPS2017_3f5ee243}
\citation{zhang2023crossformer}
\citation{jadon2022comprehensive}
\@writefile{toc}{\contentsline {section}{\numberline {2}Formulation of the problem of pointwise forecasting of a set of time series}{2}{section.2}\protected@file@percent }
\@writefile{toc}{\contentsline {section}{\numberline {3}Algorithm in case of predicting a single distance matrix}{2}{section.3}\protected@file@percent }
\@writefile{toc}{\contentsline {section}{\numberline {1}Introduction}{2}{section.1}\protected@file@percent }
\@writefile{toc}{\contentsline {section}{\numberline {2}Point-wise prediction of a set of time series}{3}{section.2}\protected@file@percent }
\@writefile{toc}{\contentsline {section}{\numberline {3}Reconstruction by a predicted distance matrix}{3}{section.3}\protected@file@percent }
\@writefile{toc}{\contentsline {section}{\numberline {4}Existence of several values of a series satisfying same distance matrix}{4}{section.4}\protected@file@percent }
\citation{MDS}
\citation{inbook}
\@writefile{toc}{\contentsline {section}{\numberline {4}Existence of several values of a series satisfying same distance matrix}{3}{section.4}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {1}{\ignorespaces These sets of time series have the same distance matrix constructed on the Euclidean metric.\relax }}{3}{figure.caption.1}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {1}{\ignorespaces These sets of time series have the same distance matrix constructed on the Euclidean metric.\relax }}{6}{figure.caption.1}\protected@file@percent }
\providecommand*\caption@xref[2]{\@setref\relax\@undefined{#1}}
\newlabel{fig:fig1}{{1}{3}{These sets of time series have the same distance matrix constructed on the Euclidean metric.\relax }{figure.caption.1}{}}
\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {Reference functions}}}{3}{subfigure.1.1}\protected@file@percent }
\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {Modified functions where 3 is subtracted from the last values}}}{3}{subfigure.1.2}\protected@file@percent }
\newlabel{fig:fig1}{{1}{6}{These sets of time series have the same distance matrix constructed on the Euclidean metric.\relax }{figure.caption.1}{}}
\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {Reference functions}}}{6}{subfigure.1.1}\protected@file@percent }
\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {Modified functions where 3 is subtracted from the last values}}}{6}{subfigure.1.2}\protected@file@percent }
\citation{puchkin2023sharper}
\@writefile{toc}{\contentsline {section}{\numberline {5}Pairwise correlation between time series as the distance function}{4}{section.5}\protected@file@percent }
\newlabel{fig:fig5}{{\caption@xref {fig:fig5}{ on input line 257}}{6}{Pairwise correlation between time series as the distance function}{figure.caption.2}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {2}{\ignorespaces Function $||\hat {\mathbf {\Sigma }}_{t+1} - \bar {\mathbf {\Sigma }}_{t+1}||_2^2$ for following series: $(1, 3)$ and $(2, 4)$. Minumums: (3; 4) is desired and (-1; 0) is alternative.\relax }}{6}{figure.caption.2}\protected@file@percent }
\@writefile{toc}{\contentsline {section}{\numberline {5}Pairwise correlation between time series}{7}{section.5}\protected@file@percent }
\newlabel{fig:fig5}{{\caption@xref {fig:fig5}{ on input line 196}}{10}{Pairwise correlation between time series}{figure.caption.2}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {2}{\ignorespaces Function $||\hat {\mathbf {\Sigma }}_{t+1} - \bar {\mathbf {\Sigma }}_{t+1}||_2^2$ for following series: $(1, 3)$ and $(2, 4)$. Minumums: (3; 4) is desired and (-1; 0) is alternative.\relax }}{10}{figure.caption.2}\protected@file@percent }
\citation{mikhalevich2024methodsnonconvexoptimization}
\@writefile{toc}{\contentsline {section}{\numberline {6}Algorithm for reconstructing time series values in case of accurate prediction of the matrix}{8}{section.6}\protected@file@percent }
\@writefile{toc}{\contentsline {section}{\numberline {6}Algorithm for reconstructing time series values in case of accurate prediction of the matrix}{12}{section.6}\protected@file@percent }
\citation{HIGHAM1988103}
\@writefile{lof}{\contentsline {figure}{\numberline {3}{\ignorespaces Prediction recovery in case of accurate prediction of correlation matrix $\mathbf {\Sigma }$. $T=20$, $T^\prime =10$\relax }}{9}{figure.caption.3}\protected@file@percent }
\newlabel{fig:fig3}{{3}{9}{Prediction recovery in case of accurate prediction of correlation matrix $\mathbf {\Sigma }$. $T=20$, $T^\prime =10$\relax }{figure.caption.3}{}}
\@writefile{toc}{\contentsline {section}{\numberline {7}Algorithm for reconstructing time series values in case of inaccurate matrix prediction}{9}{section.7}\protected@file@percent }
\@writefile{toc}{\contentsline {section}{\numberline {7}Algorithm for reconstructing time series values in case of inaccurate matrix prediction}{13}{section.7}\protected@file@percent }
\citation{zhou2021informer}
\@writefile{lof}{\contentsline {figure}{\numberline {4}{\ignorespaces Prediction reconstruction in case of inaccurate correlation matrix $\mathbf {\Sigma }$ prediction. In addition to the prediction error caused by noise in the correlation matrix a new type of error is added. When selecting a set, it is possible that the diameter is minimised not at the right set, as this is only a necessary condition, but not a sufficient one.\relax }}{10}{figure.caption.4}\protected@file@percent }
\newlabel{fig:fig4}{{4}{10}{Prediction reconstruction in case of inaccurate correlation matrix $\mathbf {\Sigma }$ prediction. In addition to the prediction error caused by noise in the correlation matrix a new type of error is added. When selecting a set, it is possible that the diameter is minimised not at the right set, as this is only a necessary condition, but not a sufficient one.\relax }{figure.caption.4}{}}
\@writefile{toc}{\contentsline {section}{\numberline {8}Experiment}{10}{section.8}\protected@file@percent }
\@writefile{toc}{\contentsline {paragraph}{Synthetic data.}{10}{section*.5}\protected@file@percent }
\@writefile{lot}{\contentsline {table}{\numberline {1}{\ignorespaces Loss on synthetic data\relax }}{10}{table.caption.6}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {5}{\ignorespaces Synthetic data reconstruction plot at $K=10$, Additional noise $\mathcal {N}(0, 0.05)$. \textbf {MAE: 0.116, MSE: 0.025}\relax }}{11}{figure.caption.7}\protected@file@percent }
\newlabel{fig:fig6}{{5}{11}{Synthetic data reconstruction plot at $K=10$, Additional noise $\mathcal {N}(0, 0.05)$. \textbf {MAE: 0.116, MSE: 0.025}\relax }{figure.caption.7}{}}
\@writefile{toc}{\contentsline {paragraph}{Electricity Transformer Temperature}{11}{section*.8}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {6}{\ignorespaces ETTh1 data reconstruction plot at $K=10$, Additional Noise $\mathcal {N}(0, 0.05)$. \textbf {MAE: 0.096, MSE: 0.019}\relax }}{11}{figure.caption.9}\protected@file@percent }
\newlabel{fig:fig7}{{6}{11}{ETTh1 data reconstruction plot at $K=10$, Additional Noise $\mathcal {N}(0, 0.05)$. \textbf {MAE: 0.096, MSE: 0.019}\relax }{figure.caption.9}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3}{\ignorespaces Prediction recovery in case of accurate prediction of correlation matrix $\mathbf {\Sigma }$. $T=20$, $T^\prime =10$\relax }}{14}{figure.caption.3}\protected@file@percent }
\newlabel{fig:fig3}{{3}{14}{Prediction recovery in case of accurate prediction of correlation matrix $\mathbf {\Sigma }$. $T=20$, $T^\prime =10$\relax }{figure.caption.3}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4}{\ignorespaces Prediction reconstruction in case of inaccurate correlation matrix $\mathbf {\Sigma }$ prediction. In addition to the prediction error caused by noise in the correlation matrix a new type of error is added. When selecting a set, it is possible that the diameter is minimised not at the right set, as this is only a necessary condition, but not a sufficient one.\relax }}{15}{figure.caption.4}\protected@file@percent }
\newlabel{fig:fig4}{{4}{15}{Prediction reconstruction in case of inaccurate correlation matrix $\mathbf {\Sigma }$ prediction. In addition to the prediction error caused by noise in the correlation matrix a new type of error is added. When selecting a set, it is possible that the diameter is minimised not at the right set, as this is only a necessary condition, but not a sufficient one.\relax }{figure.caption.4}{}}
\@writefile{toc}{\contentsline {section}{\numberline {8}Experiment}{16}{section.8}\protected@file@percent }
\@writefile{toc}{\contentsline {paragraph}{Synthetic data.}{16}{section*.5}\protected@file@percent }
\@writefile{lot}{\contentsline {table}{\numberline {1}{\ignorespaces Loss on synthetic data\relax }}{16}{table.caption.6}\protected@file@percent }
\@writefile{toc}{\contentsline {paragraph}{Electricity Transformer Temperature}{16}{section*.8}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {5}{\ignorespaces Synthetic data reconstruction plot at $K=10$, Additional noise $\mathcal {N}(0, 0.05)$. \textbf {MAE: 0.116, MSE: 0.025}\relax }}{17}{figure.caption.7}\protected@file@percent }
\newlabel{fig:fig6}{{5}{17}{Synthetic data reconstruction plot at $K=10$, Additional noise $\mathcal {N}(0, 0.05)$. \textbf {MAE: 0.116, MSE: 0.025}\relax }{figure.caption.7}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {6}{\ignorespaces ETTh1 data reconstruction plot at $K=10$, Additional Noise $\mathcal {N}(0, 0.05)$. \textbf {MAE: 0.096, MSE: 0.019}\relax }}{17}{figure.caption.9}\protected@file@percent }
\newlabel{fig:fig7}{{6}{17}{ETTh1 data reconstruction plot at $K=10$, Additional Noise $\mathcal {N}(0, 0.05)$. \textbf {MAE: 0.096, MSE: 0.019}\relax }{figure.caption.9}{}}
\bibdata{references}
\bibcite{boyd2017multiperiod}{{1}{}{{}}{{}}}
\bibcite{MDS}{{2}{}{{}}{{}}}
\bibcite{SSA}{{3}{}{{}}{{}}}
\bibcite{HIGHAM1988103}{{4}{}{{}}{{}}}
\bibcite{LSTM}{{5}{}{{}}{{}}}
\bibcite{MulticorrelatedQuadratic}{{6}{}{{}}{{}}}
\bibcite{jadon2022comprehensive}{{7}{}{{}}{{}}}
\bibcite{liu2022pyraformer}{{8}{}{{}}{{}}}
\bibcite{mikhalevich2024methodsnonconvexoptimization}{{9}{}{{}}{{}}}
\bibcite{Biosignals}{{10}{}{{}}{{}}}
\@writefile{lot}{\contentsline {table}{\numberline {2}{\ignorespaces Loss on ETTh1 data\relax }}{12}{table.caption.10}\protected@file@percent }
\@writefile{toc}{\contentsline {section}{\numberline {9}Conclusion}{12}{section.9}\protected@file@percent }
\bibcite{puchkin2023sharper}{{11}{}{{}}{{}}}
\bibcite{inbook}{{12}{}{{}}{{}}}
\bibcite{NIPS2017_3f5ee243}{{13}{}{{}}{{}}}
\bibcite{wu2021autoformer}{{14}{}{{}}{{}}}
\bibcite{zhang2023crossformer}{{15}{}{{}}{{}}}
\bibcite{haoyietal-informerEx-2023}{{16}{}{{}}{{}}}
\bibcite{haoyietal-informer-2021}{{17}{}{{}}{{}}}
\bibcite{zhou2021informer}{{18}{}{{}}{{}}}
\bibstyle{plain}
\providecommand\NAT@force@numbers{}\NAT@force@numbers
\gdef \@abspage@last{13}
\@writefile{lot}{\contentsline {table}{\numberline {2}{\ignorespaces Loss on ETTh1 data\relax }}{18}{table.caption.10}\protected@file@percent }
\@writefile{toc}{\contentsline {section}{\numberline {9}Conclusion}{18}{section.9}\protected@file@percent }
\bibcite{LSTM}{1}
\bibcite{SSA}{2}
\bibcite{Biosignals}{3}
\bibcite{boyd2017multiperiod}{4}
\bibcite{MulticorrelatedQuadratic}{5}
\bibcite{haoyietal-informer-2021}{6}
\bibcite{haoyietal-informerEx-2023}{7}
\bibcite{wu2021autoformer}{8}
\bibcite{liu2022pyraformer}{9}
\bibcite{NIPS2017_3f5ee243}{10}
\bibcite{zhang2023crossformer}{11}
\bibcite{jadon2022comprehensive}{12}
\bibcite{MDS}{13}
\bibcite{inbook}{14}
\bibcite{puchkin2023sharper}{15}
\bibcite{mikhalevich2024methodsnonconvexoptimization}{16}
\bibcite{HIGHAM1988103}{17}
\bibcite{zhou2021informer}{18}
\bibstyle{ieeetr}
\gdef \@abspage@last{20}
Loading

0 comments on commit eda4881

Please sign in to comment.