Repo "Modeling EEG data distribution with a Wasserstein Generative Adversarial Network (WGAN) to predict RSVP Events"
- Accepted in IEEE Transactions on Neural Systems & Rehabilitation Engineering
A Wasserstein Generative Adversarial with Gradient Penalty (WGAN-GP) is proposed to generate and classify electroencephalography(EEG) data of a Rapid Visual Presentation (RSVP) experiment.
The preprint is available @ https://arxiv.org/ftp/arxiv/papers/1911/1911.04379.pdf
- python 3.6.4
- tensorflow 1.12
- keras 2.2.4
- matlab for data preprocessing
- EEGLab - matlab package (optional) for data visualization