-
Notifications
You must be signed in to change notification settings - Fork 11
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Adjustments. Now you can assign a selector for each individual in the…
… population.py. Check example in Section 3 of Tutorial_English.ipynb
- Loading branch information
Jorge Mario Cruz-Duarte
committed
Sep 20, 2024
1 parent
c05f07f
commit 69d591f
Showing
6 changed files
with
10,616 additions
and
6,946 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -6,6 +6,7 @@ | |
@author: Jorge Mario Cruz-Duarte (jcrvz.github.io), e-mail: [email protected] | ||
""" | ||
from math import isfinite | ||
|
||
import numpy as np | ||
|
||
|
@@ -62,7 +63,7 @@ def __init__(self, boundaries, num_agents=30, is_constrained=True): | |
self.num_agents = num_agents | ||
|
||
# Initialise positions and fitness values | ||
self.positions = np.full((self.num_agents, self.num_dimensions), np.nan) | ||
self._positions = np.full((self.num_agents, self.num_dimensions), np.nan) | ||
self.velocities = np.full((self.num_agents, self.num_dimensions), 0) | ||
self.fitness = np.full(self.num_agents, np.nan) | ||
|
||
|
@@ -92,12 +93,30 @@ def __init__(self, boundaries, num_agents=30, is_constrained=True): | |
|
||
# TODO Add capability for dealing with topologies (neighbourhoods) | ||
# self.local_best_fitness = self.fitness | ||
# self.local_best_positions = self.positions | ||
# self.local_best_positions = self._positions | ||
|
||
# =========== | ||
# BASIC TOOLS | ||
# =========== | ||
|
||
@property | ||
def positions(self): | ||
return self._positions | ||
|
||
@positions.setter | ||
def positions(self, value): | ||
# Save the previous values | ||
self.previous_positions = np.copy(self._positions) | ||
self.previous_velocities = np.copy(self.velocities) | ||
self.previous_fitness = np.copy(self.fitness) | ||
|
||
# Remove the now current values | ||
self.velocities = np.full((self.num_agents, self.num_dimensions), 0) | ||
self.fitness = np.full(self.num_agents, np.nan) | ||
|
||
# Set the new values | ||
self._positions = value | ||
|
||
def get_state(self): | ||
""" | ||
Return a string containing the current state of the population, i.e., | ||
|
@@ -117,7 +136,7 @@ def get_positions(self): | |
:returns: numpy.ndarray | ||
""" | ||
return np.tile(self.centre_boundaries, (self.num_agents, 1)) + self.positions * np.tile( | ||
return np.tile(self.centre_boundaries, (self.num_agents, 1)) + self._positions * np.tile( | ||
self.span_boundaries / 2., (self.num_agents, 1)) | ||
|
||
def set_positions(self, positions): | ||
|
@@ -140,79 +159,107 @@ def revert_positions(self): | |
Revert the positions to the data in backup variables. | ||
""" | ||
self.fitness = np.copy(self.backup_fitness) | ||
self.positions = np.copy(self.backup_positions) | ||
self._positions = np.copy(self.backup_positions) | ||
self.velocities = np.copy(self.backup_velocities) | ||
self.particular_best_fitness = np.copy(self.backup_particular_best_fitness) | ||
self.particular_best_positions = np.copy(self.backup_particular_best_positions) | ||
self.update_positions('global', 'greedy') | ||
|
||
def update_positions(self, level='population', selector='all'): | ||
def update_positions(self, level: str ='population', selector: (str, list[str]) = 'greedy'): | ||
""" | ||
Update the population positions according to the level and selection scheme. | ||
**NOTE:** When an operator is applied (from the operators' module), it automatically replaces new positions, so | ||
the logic of selectors is contrary as they commonly do. | ||
:param str level: optional | ||
Update level, it can be 'population' for the entire population, 'particular' for each agent (an its | ||
Update level, it can be 'population' for the entire population, 'particular' for each agent_id (an | ||
historical performance), and 'global' for the current solution. The default is 'population'. | ||
:param str selector: optional | ||
Selection method. The selectors available are: 'greedy', 'probabilistic', 'metropolis', 'all', and 'none'. | ||
The default is 'all'. | ||
:returns: None. | ||
:returns: None.s | ||
""" | ||
# Update population positions, velocities and fitness | ||
if level == 'population': | ||
# backup the previous position to prevent losses | ||
self.backup_fitness = np.copy(self.previous_fitness) | ||
self.backup_positions = np.copy(self.previous_positions) | ||
self.backup_velocities = np.copy(self.previous_velocities) | ||
self.backup_particular_best_fitness = np.copy(self.particular_best_fitness) | ||
self.backup_particular_best_positions = np.copy(self.particular_best_positions) | ||
|
||
for agent in range(self.num_agents): | ||
if self._selection(self.fitness[agent], self.previous_fitness[agent], selector): | ||
# if new positions are improved, then update the previous register | ||
self.previous_fitness[agent] = np.copy(self.fitness[agent]) | ||
self.previous_positions[agent, :] = np.copy(self.positions[agent, :]) | ||
self.previous_velocities[agent, :] = np.copy(self.velocities[agent, :]) | ||
|
||
else: | ||
# ... otherwise,return to previous values | ||
self.fitness[agent] = np.copy(self.previous_fitness[agent]) | ||
self.positions[agent, :] = np.copy(self.previous_positions[agent, :]) | ||
self.velocities[agent, :] = np.copy(self.previous_velocities[agent, :]) | ||
|
||
# Update the current best and worst positions (forced to greedy) | ||
self.current_best_position = np.copy(self.positions[self.fitness.argmin(), :]) | ||
self.current_best_fitness = np.min(self.fitness) | ||
|
||
self.current_worst_position = np.copy(self.positions[self.fitness.argmax(), :]) | ||
self.current_worst_fitness = np.min(self.fitness) | ||
|
||
# Update particular positions, velocities and fitness | ||
elif level == 'particular': | ||
for agent in range(self.num_agents): | ||
if self._selection(self.fitness[agent], self.particular_best_fitness[agent], selector): | ||
self.particular_best_fitness[agent] = np.copy(self.fitness[agent]) | ||
self.particular_best_positions[agent, :] = np.copy(self.positions[agent, :]) | ||
# Check if the selector is a list | ||
|
||
# Update global positions, velocities and fitness | ||
elif level == 'global': | ||
# Perform particular updating (recursive) | ||
self.update_positions('particular', selector) | ||
|
||
# Read current global best agent | ||
candidate_position = np.copy(self.particular_best_positions[self.particular_best_fitness.argmin(), :]) | ||
candidate_fitness = np.min(self.particular_best_fitness) | ||
if self._selection(candidate_fitness, self.global_best_fitness, selector) or np.isinf(candidate_fitness): | ||
self.global_best_position = np.copy(candidate_position) | ||
self.global_best_fitness = np.copy(candidate_fitness) | ||
|
||
# Raise an error | ||
if level == 'global': | ||
if isinstance(selector, str): | ||
self.__selection_on_particular([selector] * self.num_agents) | ||
self.__selection_on_global(selector) | ||
else: | ||
raise PopulationError('Invalid global selector!') | ||
|
||
else: | ||
raise PopulationError('Invalid update level') | ||
# Check if selector is a list and this has the same length as the number of agents | ||
if isinstance(selector, list): | ||
# Assert the length of the selector | ||
assert len(selector) == self.num_agents | ||
|
||
elif isinstance(selector, str): | ||
selector = [selector] * self.num_agents | ||
else: | ||
raise PopulationError('Invalid selector!') | ||
|
||
# Update population positions, velocities and fitness | ||
if level == 'population': | ||
self.__selection_on_population(selector) | ||
|
||
# Update particular positions, velocities and fitness | ||
elif level == 'particular': | ||
self.__selection_on_particular(selector) | ||
|
||
# Raise an error | ||
else: | ||
raise PopulationError('Invalid update level') | ||
|
||
def __selection_on_population(self, selector): | ||
# backup the previous position to prevent losses | ||
self.backup_fitness = np.copy(self.previous_fitness) | ||
self.backup_positions = np.copy(self.previous_positions) | ||
self.backup_velocities = np.copy(self.previous_velocities) | ||
|
||
for agent_id in range(self.num_agents): | ||
if self._selection(self.fitness[agent_id], self.previous_fitness[agent_id], selector[agent_id]): | ||
self.__update_best_and_worst() | ||
# if new positions are improved, then update the previous register | ||
#self.previous_fitness[agent_id] = np.copy(self.fitness[agent_id]) | ||
#self.previous_positions[agent_id, :] = np.copy(self._positions[agent_id, :]) | ||
#self.previous_velocities[agent_id, :] = np.copy(self.velocities[agent_id, :]) | ||
|
||
else: | ||
# ... otherwise, return to previous values | ||
self.fitness[agent_id] = np.copy(self.previous_fitness[agent_id]) | ||
self._positions[agent_id, :] = np.copy(self.previous_positions[agent_id, :]) | ||
self.velocities[agent_id, :] = np.copy(self.previous_velocities[agent_id, :]) | ||
|
||
|
||
def __update_best_and_worst(self): | ||
# Update the current best and worst positions (forced to greedy) | ||
self.current_best_position = np.copy( | ||
self._positions[self.fitness.argmin(), :]) | ||
self.current_best_fitness = np.min(self.fitness) | ||
self.current_worst_position = np.copy( | ||
self._positions[self.fitness.argmax(), :]) | ||
self.current_worst_fitness = np.min(self.fitness) | ||
|
||
def __selection_on_particular(self, selector): | ||
self.backup_particular_best_fitness = np.copy(self.particular_best_fitness) | ||
self.backup_particular_best_positions = np.copy(self.particular_best_positions) | ||
|
||
for agent_id in range(self.num_agents): | ||
if self._selection(self.fitness[agent_id], self.particular_best_fitness[agent_id], selector[agent_id]) or not isfinite(self.particular_best_fitness[agent_id]): | ||
self.particular_best_fitness[agent_id] = np.copy(self.fitness[agent_id]) | ||
self.particular_best_positions[agent_id, :] = np.copy(self._positions[agent_id, :]) | ||
|
||
def __selection_on_global(self, selector='greedy'): | ||
# Read current global best agent_id | ||
candidate_position = np.copy(self.current_best_position) | ||
candidate_fitness = np.copy(self.current_best_fitness) | ||
if self._selection(candidate_fitness, self.global_best_fitness, selector) or not isfinite(candidate_fitness): | ||
self.global_best_position = np.copy(candidate_position) | ||
self.global_best_fitness = np.copy(candidate_fitness) | ||
|
||
def evaluate_fitness(self, problem_function): | ||
""" | ||
|
@@ -232,7 +279,7 @@ def evaluate_fitness(self, problem_function): | |
|
||
# Evaluate each agent in this function | ||
for agent in range(self.num_agents): | ||
self.fitness[agent] = problem_function(self.rescale_back(self.positions[agent, :])) | ||
self.fitness[agent] = problem_function(self.rescale_back(self._positions[agent, :])) | ||
|
||
# ============== | ||
# INITIALISATORS | ||
|
@@ -252,9 +299,9 @@ def initialise_positions(self, scheme='random'): | |
:returns: None. | ||
""" | ||
if scheme == 'vertex': | ||
self.positions = self._grid_matrix(self.num_dimensions, self.num_agents) | ||
self._positions = self._grid_matrix(self.num_dimensions, self.num_agents) | ||
else: | ||
self.positions = np.random.uniform(-1, 1, (self.num_agents, self.num_dimensions)) | ||
self._positions = np.random.uniform(-1, 1, (self.num_agents, self.num_dimensions)) | ||
|
||
# ================ | ||
# INTERNAL METHODS | ||
|
@@ -293,21 +340,21 @@ def _check_simple_constraints(self): | |
:returns: None. | ||
""" | ||
# Check if there are nans values | ||
if np.any(np.isnan(self.positions)): | ||
np.nan_to_num(self.positions, copy=False, nan=1.0, posinf=1.0, neginf=-1.0) | ||
if np.any(np.isnan(self._positions)): | ||
np.nan_to_num(self._positions, copy=False, nan=1.0, posinf=1.0, neginf=-1.0) | ||
|
||
# Check if agents are beyond lower boundaries | ||
low_check = np.less(self.positions, -1.0) | ||
low_check = np.less(self._positions, -1.0) | ||
if np.any(low_check): | ||
# Fix them | ||
self.positions[low_check] = -1.0 | ||
self._positions[low_check] = -1.0 | ||
self.velocities[low_check] = 0.0 | ||
|
||
# Check if agents are beyond upper boundaries | ||
upp_check = np.greater(self.positions, 1.0) | ||
upp_check = np.greater(self._positions, 1.0) | ||
if np.any(upp_check): | ||
# Fix them | ||
self.positions[upp_check] = 1.0 | ||
self._positions[upp_check] = 1.0 | ||
self.velocities[upp_check] = 0.0 | ||
|
||
def rescale_back(self, position): | ||
|
@@ -334,35 +381,37 @@ def _selection(self, new, old, selector='greedy'): | |
:returns: bool | ||
""" | ||
# Greedy selection | ||
if not isfinite(old): | ||
return True | ||
|
||
if selector == 'greedy': | ||
selection_condition = new <= old | ||
return new <= old | ||
|
||
# Metropolis selection | ||
elif selector == 'metropolis': | ||
if new <= old: | ||
selection_condition = True | ||
else: | ||
selection_condition = bool(np.math.exp(-(new - old) / ( | ||
selection_condition = bool(np.exp(-(new - old) / ( | ||
self.metropolis_boltzmann * self.metropolis_temperature * | ||
((1 - self.metropolis_rate) ** self.iteration) + 1e-23)) > np.random.rand()) | ||
return selection_condition | ||
|
||
# Probabilistic selection | ||
elif selector == 'probabilistic': | ||
selection_condition = bool((new <= old) or (np.random.rand() <= self.probability_selection)) | ||
return bool((new <= old) or (np.random.rand() <= self.probability_selection)) | ||
|
||
# All selection | ||
elif selector == 'all': | ||
selection_condition = True | ||
elif selector in ['all', 'direct']: | ||
return True | ||
|
||
# None selection | ||
elif selector == 'none': | ||
selection_condition = False | ||
return False | ||
else: | ||
selection_condition = None | ||
raise PopulationError('Invalid selector!') | ||
return None | ||
|
||
return selection_condition | ||
|
||
|
||
class PopulationError(Exception): | ||
|
Oops, something went wrong.