-
Notifications
You must be signed in to change notification settings - Fork 15
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #24 from jhelvy/predict
Predict
- Loading branch information
Showing
74 changed files
with
1,354 additions
and
1,589 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,6 +1,6 @@ | ||
Package: logitr | ||
Title: Logit Models w/Preference & WTP Space Utility Parameterizations | ||
Version: 0.3.1 | ||
Version: 0.4.0 | ||
Authors@R: c( | ||
person(given = "John", | ||
family = "Helveston", | ||
|
@@ -11,7 +11,7 @@ Authors@R: c( | |
family = "Forsythe", | ||
role = "ctb", | ||
email = "[email protected]")) | ||
Description: Estimation of multinomial (MNL) and mixed logit (MXL) models in R. Models can be estimated using "Preference" space or "Willingness-to-pay" (WTP) space utility parameterizations. Weighted models can also be estimated. An option is available to run a multistart optimization loop with random starting points in each iteration, which is useful for non-convex problems like MXL models or models with WTP space utility parameterizations. The main optimization loop uses the 'nloptr' package to minimize the negative log-likelihood function. Additional functions are available for computing and comparing WTP from both preference space and WTP space models and for predicting expected choices and choice probabilities for sets of alternatives based on an estimated model. MXL models assume uncorrelated heterogeneity covariances and are estimated using maximum simulated likelihood based on the algorithms in Train (2009) "Discrete Choice Methods with Simulation, 2nd Edition" <doi:10.1017/CBO9780511805271>. | ||
Description: Fast estimation of multinomial (MNL) and mixed logit (MXL) models in R. Models can be estimated using "Preference" space or "Willingness-to-pay" (WTP) space utility parameterizations. Weighted models can also be estimated. An option is available to run a multistart optimization loop with random starting points in each iteration, which is useful for non-convex problems like MXL models or models with WTP space utility parameterizations. The main optimization loop uses the 'nloptr' package to minimize the negative log-likelihood function. Additional functions are available for computing and comparing WTP from both preference space and WTP space models and for predicting expected choices and choice probabilities for sets of alternatives based on an estimated model. MXL models assume uncorrelated heterogeneity covariances and are estimated using maximum simulated likelihood based on the algorithms in Train (2009) "Discrete Choice Methods with Simulation, 2nd Edition" <doi:10.1017/CBO9780511805271>. | ||
License: MIT + file LICENSE | ||
Encoding: UTF-8 | ||
LazyData: true | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.