Skip to content

Commit

Permalink
Fix issue with newer custom models (#110)
Browse files Browse the repository at this point in the history
* Fix issue with newer custom models

* Increment for 0.16.0
  • Loading branch information
joeweiss authored Mar 13, 2024
1 parent 8bf8eb5 commit 2c12a93
Show file tree
Hide file tree
Showing 3 changed files with 28 additions and 34 deletions.
4 changes: 4 additions & 0 deletions dev/testing.md
Original file line number Diff line number Diff line change
Expand Up @@ -9,6 +9,10 @@ docker-compose up -d
docker-compose exec main pip install -r dev/docker-m1-requirements.txt
docker-compose exec main pytest
# To skip the multithread tests ...
docker-compose exec main pytest -m "not omit_during_ghactions"
```

## Ubuntu 22
Expand Down
2 changes: 1 addition & 1 deletion pyproject.toml
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,7 @@ exclude = [

[project]
name = "birdnetlib"
version = "0.15.0"
version = "0.16.0"
authors = [
{ name="Joe Weiss", email="[email protected]" },
]
Expand Down
56 changes: 23 additions & 33 deletions src/birdnetlib/analyzer.py
Original file line number Diff line number Diff line change
Expand Up @@ -410,45 +410,36 @@ def load_custom_list(self):
print(len(species_list), "species loaded.")

# Custom models.
def _return_embeddings(self, data):
self.interpreter.resize_tensor_input(
self.input_layer_index, [len(data), *data[0].shape]
)
self.interpreter.allocate_tensors()
# Extract feature embeddings
self.interpreter.set_tensor(
self.input_layer_index, np.array(data, dtype="float32")
)
self.interpreter.invoke()
features = self.interpreter.get_tensor(self.output_layer_index)
return features

def predict_with_custom_classifier(self, sample):
# print("predict_with_custom_classifier")

data = np.array([sample], dtype="float32")
# print(data[0])

# Make a prediction (Audio only for now)
INTERPRETER = self.interpreter
INPUT_LAYER_INDEX = self.input_layer_index
OUTPUT_LAYER_INDEX = self.output_layer_index

INTERPRETER.resize_tensor_input(INPUT_LAYER_INDEX, [len(data), *data[0].shape])
INTERPRETER.allocate_tensors()

# Extract feature embeddings
INTERPRETER.set_tensor(INPUT_LAYER_INDEX, np.array(data, dtype="float32"))
INTERPRETER.invoke()
features = INTERPRETER.get_tensor(OUTPUT_LAYER_INDEX)

feature_vector = features

C_INTERPRETER = self.custom_interpreter
C_INPUT_LAYER_INDEX = self.custom_input_layer_index
C_OUTPUT_LAYER_INDEX = self.custom_output_layer_index

C_INTERPRETER.resize_tensor_input(
C_INPUT_LAYER_INDEX, [len(feature_vector), *feature_vector[0].shape]
input_details = self.custom_interpreter.get_input_details()
input_size = input_details[0]["shape"][-1]
feature_vector = self._return_embeddings(data) if input_size != 144000 else data
self.custom_interpreter.resize_tensor_input(
self.custom_input_layer_index,
[len(feature_vector), *feature_vector[0].shape],
)
C_INTERPRETER.allocate_tensors()
self.custom_interpreter.allocate_tensors()

# Make a prediction
C_INTERPRETER.set_tensor(
C_INPUT_LAYER_INDEX, np.array(feature_vector, dtype="float32")
self.custom_interpreter.set_tensor(
self.custom_input_layer_index, np.array(feature_vector, dtype="float32")
)
C_INTERPRETER.invoke()
prediction = C_INTERPRETER.get_tensor(C_OUTPUT_LAYER_INDEX)

# print(prediction)
self.custom_interpreter.invoke()
prediction = self.custom_interpreter.get_tensor(self.custom_output_layer_index)

# Logits or sigmoid activations?
APPLY_SIGMOID = True
Expand All @@ -457,7 +448,6 @@ def predict_with_custom_classifier(self, sample):
prediction = self.flat_sigmoid(
np.array(prediction), sensitivity=-SIGMOID_SENSITIVITY
)

return prediction

def load_custom_models(self):
Expand Down

0 comments on commit 2c12a93

Please sign in to comment.