- Download Market1501 Dataset
- Download DukeMTMC-reID Dataset
- Download CUHK03 Dataset
- Download VIPeR Dataset
Change the download_path
to point to your dataset folder. Comment out multi-query
except for Market1501
dataset.
python prepare.py
python re_index.py
- Train the baseline
python train.py
- Train SLS_ReID
python sls_train.py
Add --use_dense
argument to train using DenseNet121
architecture
Dataset | Dense Baseline | ResNet Baseline | Dense SLS_ReID | ResNet SLS_ReID |
---|---|---|---|---|
Market-1501 | market/dense.pth | market/resnet.pth | cuhk03/dense_slsreid.pth | market/resnet_slsreid.pth |
CUHK03 | cuhk03/dense.pth | cuhk03/resnet.pth | cuhk03/dense_slsreid.pth | cuhk03/resnet_slsreid.pth |
VIPeR | viper/dense.pth | viper/resnet.pth | viper/dense_slsreid.pth | viper/resnet_slsreid.pth |
DukeMTMCReID | duke/dense.pth | duke/resnet.pth | duke/dense_slsreid.pth | duke/resnet_slsreid.pth |
To generate the GAN label (gan%.list
ie gan0.list
, gan1.list
and gan2.list
for three cluster ), run generate_labels_for_gan
:
python prepare_gan_data.py
python test_cuhk03.py --model_path ./cuhk03/model.pth --use_dense
python eval_cuhk03.py
----------
python test_viper.py --model_path ./viper/model.pth --use_dense
%Add --re_rank to get re-ranking with k-reciprocal encoding
----------
python test.py --model_path ./market/model.pth --use_dense
python evaluate.py
python evaluate_rerank.py
%Add --multi for multi-query evaluation
Dataset | Rank 1 | Rank 5 | Rank 10 | Rank 20 | mAP |
---|---|---|---|---|---|
CUHK03-Dense Baseline |
67.92% | 90.94% | 95.35% | 97.78% | 78.10% |
CUHK03-Dense SLS_ReID |
84.32% | 97.13% | 98.92% | 99.63% | 89.92% |
CUHK03-ResNet Baseline |
75.02% | 95.08% | 97.92% | 99.11% | 83.87% |
CUHK03-ResNet SLS_ReID |
90.99% | 98.24% | 99.25% | 99.74% | 94.18% |
VIPeR-Dense Baseline |
63.45% | 72.78% | 79.11% | 86.23% | - |
VIPeR-Dense SLS_ReID |
67.41% | 81.01% | 88.61% | 93.51% | - |
Market-1501-Dense Baseline |
90.05% | 96.82% | 98.10% | 98.81% | 74.16% |
Market-1501-Dense SLS_ReID |
92.43% | 97.27% | 98.40% | - | 79.08% |
Market-1501-ResNet Baseline |
87.29% | 95.57% | 96.94% | - | 69.70% |
Market-1501-ResNet SLS_ReID |
89.16% | 95.78% | 97.33% | - | 75.15% |
DukeMTMC-ReID-Dense Baseline |
79.67% | 89.85% | 92.86% | 95.11% | 63.19% |
DukeMTMC-ReID-Dense SLS_ReID |
82.94% | 91.69% | 94.43% | 95.96% | 67.78% |
DukeMTMC-ReID-ResNet Baseline |
76.66% | 87.83% | 91.47% | 93.76% | 58.35% |
DukeMTMC-ReID-ResNet SLS_ReID |
76.53% | 88.15% | 91.02% | 93.54% | 60.79% |
Dataset | Rank 1 | Rank 5 | Rank 10 | mAP |
---|---|---|---|---|
ResNet baseline | 91.27% | 96.85% | 98.19% | 76.94% |
DenseNet baseline | 92.90% | 97.89% | 98.69% | 81.22% |
Resnet SLS_ReID | 92.25% | 97.51% | 98.34% | 81.92% |
Dense SLS_ReID | 94.06% | 98.16% | 98.84% | 85.20% |
@ARTICLE{AinamSLSR2018,
author={J. {Ainam} and K. {Qin} and G. {Liu} and G. {Luo}},
journal={IEEE Access},
title={Sparse Label Smoothing Regularization for Person Re-Identification},
year={2019},
volume={7},
pages={27899-27910},
doi={10.1109/ACCESS.2019.2901599},
ISSN={2169-3536}
}