Skip to content

Sparse Label Smoothing Regularization for Person Re-Identification

Notifications You must be signed in to change notification settings

jpainam/SLS_ReID

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

36 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

SLS ReID

Datasets

Dataset preperation

Change the download_path to point to your dataset folder. Comment out multi-query except for Market1501 dataset.

python prepare.py
python re_index.py

Training

  • Train the baseline
python train.py 
  • Train SLS_ReID
python sls_train.py 

Add --use_dense argument to train using DenseNet121 architecture

Pre-trained models

Dataset Dense Baseline ResNet Baseline Dense SLS_ReID ResNet SLS_ReID
Market-1501 market/dense.pth market/resnet.pth cuhk03/dense_slsreid.pth market/resnet_slsreid.pth
CUHK03 cuhk03/dense.pth cuhk03/resnet.pth cuhk03/dense_slsreid.pth cuhk03/resnet_slsreid.pth
VIPeR viper/dense.pth viper/resnet.pth viper/dense_slsreid.pth viper/resnet_slsreid.pth
DukeMTMCReID duke/dense.pth duke/resnet.pth duke/dense_slsreid.pth duke/resnet_slsreid.pth

To generate the GAN label (gan%.list ie gan0.list, gan1.list and gan2.list for three cluster ), run generate_labels_for_gan:

python prepare_gan_data.py

Testing

python test_cuhk03.py --model_path ./cuhk03/model.pth --use_dense
python eval_cuhk03.py
----------
python test_viper.py --model_path ./viper/model.pth --use_dense
%Add --re_rank to get re-ranking with k-reciprocal encoding
----------
python test.py --model_path ./market/model.pth --use_dense
python evaluate.py
python evaluate_rerank.py 
%Add --multi for multi-query evaluation

Currents results

Dataset Rank 1 Rank 5 Rank 10 Rank 20 mAP
CUHK03-Dense Baseline 67.92% 90.94% 95.35% 97.78% 78.10%
CUHK03-Dense SLS_ReID 84.32% 97.13% 98.92% 99.63% 89.92%
CUHK03-ResNet Baseline 75.02% 95.08% 97.92% 99.11% 83.87%
CUHK03-ResNet SLS_ReID 90.99% 98.24% 99.25% 99.74% 94.18%
VIPeR-Dense Baseline 63.45% 72.78% 79.11% 86.23% -
VIPeR-Dense SLS_ReID 67.41% 81.01% 88.61% 93.51% -
Market-1501-Dense Baseline 90.05% 96.82% 98.10% 98.81% 74.16%
Market-1501-Dense SLS_ReID 92.43% 97.27% 98.40% - 79.08%
Market-1501-ResNet Baseline 87.29% 95.57% 96.94% - 69.70%
Market-1501-ResNet SLS_ReID 89.16% 95.78% 97.33% - 75.15%
DukeMTMC-ReID-Dense Baseline 79.67% 89.85% 92.86% 95.11% 63.19%
DukeMTMC-ReID-Dense SLS_ReID 82.94% 91.69% 94.43% 95.96% 67.78%
DukeMTMC-ReID-ResNet Baseline 76.66% 87.83% 91.47% 93.76% 58.35%
DukeMTMC-ReID-ResNet SLS_ReID 76.53% 88.15% 91.02% 93.54% 60.79%

Multi-query results for Market-1501 dataset

Dataset Rank 1 Rank 5 Rank 10 mAP
ResNet baseline 91.27% 96.85% 98.19% 76.94%
DenseNet baseline 92.90% 97.89% 98.69% 81.22%
Resnet SLS_ReID 92.25% 97.51% 98.34% 81.92%
Dense SLS_ReID 94.06% 98.16% 98.84% 85.20%

References

@ARTICLE{AinamSLSR2018,
author={J. {Ainam} and K. {Qin} and G. {Liu} and G. {Luo}}, 
journal={IEEE Access}, 
title={Sparse Label Smoothing Regularization for Person Re-Identification}, 
year={2019}, 
volume={7},  
pages={27899-27910},  
doi={10.1109/ACCESS.2019.2901599}, 
ISSN={2169-3536}
}

About

Sparse Label Smoothing Regularization for Person Re-Identification

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages