-
Feature scaling should be applied after the train/test data split to prevent data leakage from a validation set to a train set.
-
No need to check for [linear regression assumptions] prior to trying out linear regression model. If some of the data doesn't have linear correlation, an LR model will just perform poorly compared to other models that we should try anyways.
-
When presented with a task and a dataset, how do I choose which type of regression start applying?
– Models of different types need to be tested and compared in terms of accuracy
in the best conditions.
-
Welcome Challenge!
-
Machine Learning Demo - Get Excited!
-
Get all the Datasets, Codes and Slides here
-
How to use the ML A-Z folder Google Colab
-
Installing R and R Studio (Mac, Linux Windows)
-
BONUS: Use ChatGPT to Boost your ML Skills
-
Welcome to Part 1 - Data Preprocessing
-
The Machine Learning process
-
Splitting the data into a Training and Test set
-
Feature Scaling
-
Getting Started - Step 1
-
Getting Started - Step 2
-
Importing the Libraries
-
Importing the Dataset - Step 1
-
Importing the Dataset - Step 2
-
Importing the Dataset - Step 3
-
For Python learners, summary of Object-oriented programming: classes objects Coding Exercise 1: Coding Exercise 1: Importing and Preprocessing a Dataset for Machine Learning
-
Taking care of Missing Data - Step 1
-
Taking care of Missing Data - Step 2
Coding Exercise 2: Coding Exercise 2: Handling Missing Data in a Dataset for Machine Learning 20. Encoding Categorical Data - Step 1
-
Encoding Categorical Data - Step 2
-
Encoding Categorical Data - Step 3
Coding Exercise 3: Coding Exercise 3: Encoding Categorical Data for Machine Learning 23. Splitting the dataset into the Training set and Test set - Step 1 24. Splitting the dataset into the Training set and Test set - Step 2 25. Splitting the dataset into the Training set and Test set - Step 3 Coding Exercise 4: Coding Exercise 4: Dataset Splitting and Feature Scaling 26. Feature Scaling - Step 1
-
Feature Scaling - Step 2
-
Feature Scaling - Step 3
-
Feature Scaling - Step 4
Coding Exercise 5: Coding exercise 5: Feature scaling for Machine Learning
-
Getting Started
-
Dataset Description
-
Importing the Dataset
-
Taking care of Missing Data
-
Encoding Categorical Data
-
Splitting the dataset into the Training set and Test set - Step 1
-
Splitting the dataset into the Training set and Test set - Step 2
-
Feature Scaling - Step 1
-
Feature Scaling - Step 2
-
Data Preprocessing Template
Quiz 1: Data Preprocessing Quiz
- Welcome to Part 2 - Regression
-
Simple Linear Regression Intuition
-
Ordinary Least Squares
-
Simple Linear Regression in Python - Step 1a
-
Simple Linear Regression in Python - Step 1b
-
Simple Linear Regression in Python - Step 2a
-
Simple Linear Regression in Python - Step 2b
-
Simple Linear Regression in Python - Step 3
-
Simple Linear Regression in Python - Step 4a
-
Simple Linear Regression in Python - Step 4b
-
Simple Linear Regression in Python - Additional Lecture
-
Simple Linear Regression in R - Step 1
-
Simple Linear Regression in R - Step 2
-
Simple Linear Regression in R - Step 3
-
Simple Linear Regression in R - Step 4a
-
Simple Linear Regression in R - Step 4b
-
Simple Linear Regression in R - Step 4c
Quiz 2: Simple Linear Regression Quiz
-
Dataset + Business Problem Description
-
Multiple Linear Regression Intuition
-
Assumptions of Linear Regression
-
Multiple Linear Regression Intuition - Step 3
-
Multiple Linear Regression Intuition - Step 4
-
Understanding the P-Value
-
Multiple Linear Regression Intuition - Step 5
-
Multiple Linear Regression in Python - Step 1a
-
Multiple Linear Regression in Python - Step 1b
-
Multiple Linear Regression in Python - Step 2a
-
Multiple Linear Regression in Python - Step 2b
-
Multiple Linear Regression in Python - Step 3a
-
Multiple Linear Regression in Python - Step 3b
-
Multiple Linear Regression in Python - Step 4a
-
Multiple Linear Regression in Python - Step 4b
-
Multiple Linear Regression in Python - Backward Elimination
-
Multiple Linear Regression in Python - EXTRA CONTENT
-
Multiple Linear Regression in R - Step 1a
-
Multiple Linear Regression in R - Step 1b
-
Multiple Linear Regression in R - Step 2a
-
Multiple Linear Regression in R - Step 2b
-
Multiple Linear Regression in R - Step 3
-
Multiple Linear Regression in R - Backward Elimination - HOMEWORK !
-
Multiple Linear Regression in R - Backward Elimination - Homework Solution
-
Multiple Linear Regression in R - Automatic Backward Elimination Quiz 3: Multiple Linear Regression Quiz
-
Polynomial Regression Intuition
-
Polynomial Regression in Python - Step 1a
-
Polynomial Regression in Python - Step 1b
-
Polynomial Regression in Python - Step 2a
-
Polynomial Regression in Python - Step 2b
-
Polynomial Regression in Python - Step 3a
-
Polynomial Regression in Python - Step 3b
-
Polynomial Regression in Python - Step 4a
-
Polynomial Regression in Python - Step 4b
-
Polynomial Regression in R - Step 1a
-
Polynomial Regression in R - Step 1b
-
Polynomial Regression in R - Step 2a
-
Polynomial Regression in R - Step 2b
-
Polynomial Regression in R - Step 3a
-
Polynomial Regression in R - Step 3b
-
Polynomial Regression in R - Step 3c
-
Polynomial Regression in R - Step 4a
-
Polynomial Regression in R - Step 4b
-
R Regression Template - Step 1
-
R Regression Template - Step 2
Quiz 4: Polynomial Regression Quiz
-
SVR Intuition (Updated!)
-
Heads-up on non-linear SVR
-
SVR in Python - Step 1a
-
SVR in Python - Step 1b
-
SVR in Python - Step 2a
-
SVR in Python - Step 2b
-
SVR in Python - Step 2c
-
SVR in Python - Step 3
-
SVR in Python - Step 4
-
SVR in Python - Step 5a
-
SVR in Python - Step 5b
-
SVR in R - Step 1
-
SVR in R - Step 2
Quiz 5: SVR Quiz
-
Decision Tree Regression Intuition
-
Decision Tree Regression in Python - Step 1a
-
Decision Tree Regression in Python - Step 1b
-
Decision Tree Regression in Python - Step 2
-
Decision Tree Regression in Python - Step 3
-
Decision Tree Regression in Python - Step 4
-
Decision Tree Regression in R - Step 1
-
Decision Tree Regression in R - Step 2
-
Decision Tree Regression in R - Step 3
-
Decision Tree Regression in R - Step 4
Quiz 6: Decision Tree Regression Quiz
-
Random Forest Regression Intuition
-
Random Forest Regression in Python - Step 1
-
Random Forest Regression in Python - Step 2
-
Random Forest Regression in R - Step 1
-
Random Forest Regression in R - Step 2
-
Random Forest Regression in R - Step 3
Quiz 7: Random Forest Regression Quiz
Performance
-
R-Squared Intuition
-
Adjusted R-Squared Intuition
Quiz 8: Evaluating Regression Models Performance Quiz
Python
- Make sure you have this Model Selection folder ready
- Preparation of the Regression Code Templates - Step 1
- Preparation of the Regression Code Templates - Step 2
- Preparation of the Regression Code Templates - Step 3
- Preparation of the Regression Code Templates - Step 4
- THE ULTIMATE DEMO OF THE POWERFUL REGRESSION CODE TEMPLATES IN ACTION! - STEP 1
- THE ULTIMATE DEMO OF THE POWERFUL REGRESSION CODE TEMPLATES IN ACTION! - STEP 2
- Conclusion of Part 2 - Regression
- Evaluating Regression Models Performance - Homework's Final Part
- Interpreting Linear Regression Coefficients
- Conclusion of Part 2 - Regression
-
Welcome to Part 3 - Classification
-
What is Classification?
-
Logistic Regression Intuition
-
Maximum Likelihood
-
Logistic Regression in Python - Step 1a
-
Logistic Regression in Python - Step 1b
-
Logistic Regression in Python - Step 2a
-
Logistic Regression in Python - Step 2b
-
Logistic Regression in Python - Step 3a
-
Logistic Regression in Python - Step 3b
-
Logistic Regression in Python - Step 4a
-
Logistic Regression in Python - Step 4b
-
Logistic Regression in Python - Step 5
-
Logistic Regression in Python - Step 6a
-
Logistic Regression in Python - Step 6b
-
Logistic Regression in Python - Step 7a
-
Logistic Regression in Python - Step 7b
-
Logistic Regression in Python - Step 7c
-
Logistic Regression in Python - Step 7 (Colour-blind friendly image)
-
Logistic Regression in R - Step 1
-
Logistic Regression in R - Step 2
-
Logistic Regression in R - Step 3
-
Logistic Regression in R - Step 4
-
Warning - Update
-
Logistic Regression in R - Step 5a
-
Logistic Regression in R - Step 5b
-
Logistic Regression in R - Step 5c
-
Logistic Regression in R - Step 5 (Colour-blind friendly image)
-
R Classification Template
-
Machine Learning Regression and Classification BONUS Quiz 9: Logistic Regression Quiz
-
EXTRA CONTENT: Logistic Regression Practical Case Study
-
K-Nearest Neighbor Intuition
-
K-NN in Python - Step 1
-
K-NN in Python - Step 2
-
K-NN in Python - Step 3
-
K-NN in R - Step 1
-
K-NN in R - Step 2
-
K-NN in R - Step 3
Quiz 10: K-Nearest Neighbor Quiz
-
SVM Intuition
-
SVM in Python - Step 1
-
SVM in Python - Step 2
-
SVM in Python - Step 3
-
SVM in R - Step 1
-
SVM in R - Step 2
Quiz 11: SVM Quiz
-
Kernel SVM Intuition
-
Mapping to a higher dimension
-
The Kernel Trick
-
Types of Kernel Functions
-
Non-Linear Kernel SVR (Advanced)
-
Kernel SVM in Python - Step 1
-
Kernel SVM in Python - Step 2
-
Kernel SVM in R - Step 1
-
Kernel SVM in R - Step 2
-
Kernel SVM in R - Step 3
Quiz 12: Kernel SVM Quiz
-
Bayes Theorem
-
Naive Bayes Intuition
-
Naive Bayes Intuition (Challenge Reveal)
-
Naive Bayes Intuition (Extras)
-
Naive Bayes in Python - Step 1
-
Naive Bayes in Python - Step 2
-
Naive Bayes in Python - Step 3
-
Naive Bayes in R - Step 1
-
Naive Bayes in R - Step 2
-
Naive Bayes in R - Step 3
Quiz 13: Naive Bayes Quiz
-
Decision Tree Classification Intuition
-
Decision Tree Classification in Python - Step 1
-
Decision Tree Classification in Python - Step 2
-
Decision Tree Classification in R - Step 1
-
Decision Tree Classification in R - Step 2
-
Decision Tree Classification in R - Step 3
Quiz 14: Decision Tree Classification Quiz
-
Random Forest Classification Intuition
-
Random Forest Classification in Python - Step 1
-
Random Forest Classification in Python - Step 2
-
Random Forest Classification in R - Step 1
-
Random Forest Classification in R - Step 2
-
Random Forest Classification in R - Step 3
Quiz 15: Random Forest Classification Quiz
Python
-
Make sure you have this Model Selection folder ready
-
Confusion Matrix Accuracy Ratios
-
ULTIMATE DEMO OF THE POWERFUL CLASSIFICATION CODE TEMPLATES IN ACTION - STEP 1
-
ULTIMATE DEMO OF THE POWERFUL CLASSIFICATION CODE TEMPLATES IN ACTION - STEP 2
-
ULTIMATE DEMO OF THE POWERFUL CLASSIFICATION CODE TEMPLATES IN ACTION - STEP 3
-
ULTIMATE DEMO OF THE POWERFUL CLASSIFICATION CODE TEMPLATES IN ACTION - STEP 4
Performance
-
False Positives False Negatives
-
Accuracy Paradox
-
CAP Curve
-
CAP Curve Analysis
-
Conclusion of Part 3 - Classification
Quiz 16: Evaluating Classiification Model Performance Quiz
- Welcome to Part 4 - Clustering
-
What is Clustering? (Supervised vs Unsupervised Learning)
-
K-Means Clustering Intuition
-
The Elbow Method
-
K-Means++
-
K-Means Clustering in Python - Step 1a
-
K-Means Clustering in Python - Step 1b
-
K-Means Clustering in Python - Step 2a
-
K-Means Clustering in Python - Step 2b
-
K-Means Clustering in Python - Step 3a
-
K-Means Clustering in Python - Step 3b
-
K-Means Clustering in Python - Step 3c
-
K-Means Clustering in Python - Step 4
-
K-Means Clustering in Python - Step 5a
-
K-Means Clustering in Python - Step 5b
-
K-Means Clustering in Python - Step 5c
-
K-Means Clustering in R - Step 1
-
K-Means Clustering in R - Step 2
Quiz 17: K-Means Clustering Quiz
-
Hierarchical Clustering Intuition
-
Hierarchical Clustering How Dendrograms Work
-
Hierarchical Clustering Using Dendrograms
-
Hierarchical Clustering in Python - Step 1
-
Hierarchical Clustering in Python - Step 2a
-
Hierarchical Clustering in Python - Step 2b
-
Hierarchical Clustering in Python - Step 2c
-
Hierarchical Clustering in Python - Step 3a
-
Hierarchical Clustering in Python - Step 3b
-
Hierarchical Clustering in R - Step 1
-
Hierarchical Clustering in R - Step 2
-
Hierarchical Clustering in R - Step 3
-
Hierarchical Clustering in R - Step 4
-
Hierarchical Clustering in R - Step 5
Quiz 18: Hierarchical Clustering Quiz
- Conclusion of Part 4 - Clustering
- Welcome to Part 5 - Association Rule Learning
-
Apriori Intuition
-
Apriori in Python - Step 1
-
Apriori in Python - Step 2
-
Apriori in Python - Step 3
-
Apriori in Python - Step 4
-
Apriori in R - Step 1
-
Apriori in R - Step 2
-
Apriori in R - Step 3
Quiz 19: Apriori Quiz
-
Eclat Intuition
-
Eclat in Python
-
Eclat in R
Quiz 20: Eclat Quiz
- Welcome to Part 6 - Reinforcement Learning
-
The Multi-Armed Bandit Problem
-
Upper Confidence Bound (UCB) Intuition
-
Upper Confidence Bound in Python - Step 1
-
Upper Confidence Bound in Python - Step 2
-
Upper Confidence Bound in Python - Step 3
-
Upper Confidence Bound in Python - Step 4
-
Upper Confidence Bound in Python - Step 5
-
Upper Confidence Bound in Python - Step 6
-
Upper Confidence Bound in Python - Step 7
-
Upper Confidence Bound in R - Step 1
-
Upper Confidence Bound in R - Step 2
-
Upper Confidence Bound in R - Step 3
-
Upper Confidence Bound in R - Step 4
Quiz 21: Upper Confidence Bound Quiz
-
Thompson Sampling Intuition
-
Algorithm Comparison: UCB vs Thompson Sampling
-
Thompson Sampling in Python - Step 1
-
Thompson Sampling in Python - Step 2
-
Thompson Sampling in Python - Step 3
-
Thompson Sampling in Python - Step 4
-
Additional Resource for this Section
-
Thompson Sampling in R - Step 1
-
Thompson Sampling in R - Step 2
Quiz 22: Thompson Sampling Quiz
-
Welcome to Part 7 - Natural Language Processing
-
NLP Intuition
-
Types of Natural Language Processing
-
Classical vs Deep Learning Models
-
Bag-Of-Words Model
-
Natural Language Processing in Python - Step 1
-
Natural Language Processing in Python - Step 2
-
Natural Language Processing in Python - Step 3
-
Natural Language Processing in Python - Step 4
-
Natural Language Processing in Python - Step 5
-
Natural Language Processing in Python - Step 6
-
Natural Language Processing in Python - BONUS
-
Homework Challenge
-
Natural Language Processing in R - Step 1
-
Warning - Update
-
Natural Language Processing in R - Step 2
-
Natural Language Processing in R - Step 3
-
Natural Language Processing in R - Step 4
-
Natural Language Processing in R - Step 5
-
Natural Language Processing in R - Step 6
-
Natural Language Processing in R - Step 7
-
Natural Language Processing in R - Step 8
-
Natural Language Processing in R - Step 9
-
Natural Language Processing in R - Step 10
-
Homework Challenge
Quiz 23: Natural Language Processing Quiz
-
Welcome to Part 8 - Deep Learning
-
What is Deep Learning?
Quiz 24: Deep Learning Quiz
-
Plan of attack
-
The Neuron
-
The Activation Function
-
How do Neural Networks work?
-
How do Neural Networks learn?
-
Gradient Descent
-
Stochastic Gradient Descent
-
Backpropagation
-
Business Problem Description
-
ANN in Python - Step 1
-
ANN in Python - Step 2
-
ANN in Python - Step 3
-
ANN in Python - Step 4
-
ANN in Python - Step 5
-
ANN in R - Step 1
-
ANN in R - Step 2
-
ANN in R - Step 3
-
ANN in R - Step 4 (Last step)
-
Deep Learning Additional Content
-
EXTRA CONTENT: ANN Case Study
Quiz 25: ANN QUIZ
-
Plan of attack
-
What are convolutional neural networks?
-
Step 1 - Convolution Operation
-
Step 1(b) - ReLU Layer
-
Step 2 - Pooling
-
Step 3 - Flattening
-
Step 4 - Full Connection
-
Summary
-
Softmax Cross-Entropy
-
CNN in Python - Step 1
-
CNN in Python - Step 2
-
CNN in Python - Step 3
-
CNN in Python - Step 4
-
CNN in Python - Step 5
-
CNN in Python - FINAL DEMO!
-
Deep Learning Additional Content #2
Quiz 26: CNN Quiz
- Welcome to Part 9 - Dimensionality Reduction
-
Principal Component Analysis (PCA) Intuition
-
PCA in Python - Step 1
-
PCA in Python - Step 2
-
PCA in R - Step 1
-
PCA in R - Step 2
-
PCA in R - Step 3
Quiz 27: PCA Quiz
-
Linear Discriminant Analysis (LDA) Intuition
-
LDA in Python
-
LDA in R
Quiz 28: LDA Quiz
-
Kernel PCA in Python
-
Kernel PCA in R
Boosting
- Welcome to Part 10 - Model Selection Boosting
-
k-Fold Cross Validation in Python
-
Grid Search in Python
-
k-Fold Cross Validation in R
-
Grid Search in R
-
XGBoost in Python
-
Model Selection and Boosting Additional Content
-
XGBoost in R
Explanation)
- Logistic Regression Intuition