Skip to content

Commit

Permalink
[Ready to merge] Pruned Transducer Stateless2 for WenetSpeech (char-b…
Browse files Browse the repository at this point in the history
…ased) (#349)

* add char-based pruned-rnnt2 for wenetspeech

* style check

* style check

* change for export.py

* do some changes

* do some changes

* a small change for .flake8

* solve the conflicts
  • Loading branch information
luomingshuang authored May 23, 2022
1 parent 2f1e23c commit 0e57b30
Show file tree
Hide file tree
Showing 29 changed files with 4,134 additions and 0 deletions.
33 changes: 33 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -20,6 +20,8 @@ We provide 6 recipes at present:
- [TIMIT][timit]
- [TED-LIUM3][tedlium3]
- [GigaSpeech][gigaspeech]
- [Aidatatang_200zh][aidatatang_200zh]
- [WenetSpeech][wenetspeech]

### yesno

Expand Down Expand Up @@ -217,6 +219,33 @@ and [Pruned stateless RNN-T: Conformer encoder + Embedding decoder + k2 pruned R
| fast beam search | 10.50 | 10.69 |
| modified beam search | 10.40 | 10.51 |

### Aidatatang_200zh

We provide one model for this recipe: [Pruned stateless RNN-T: Conformer encoder + Embedding decoder + k2 pruned RNN-T loss][Aidatatang_200zh_pruned_transducer_stateless2].

#### Pruned stateless RNN-T: Conformer encoder + Embedding decoder + k2 pruned RNN-T loss

| | Dev | Test |
|----------------------|-------|-------|
| greedy search | 5.53 | 6.59 |
| fast beam search | 5.30 | 6.34 |
| modified beam search | 5.27 | 6.33 |

We provide a Colab notebook to run a pre-trained Pruned Transducer Stateless model: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1wNSnSj3T5oOctbh5IGCa393gKOoQw2GH?usp=sharing)

### WenetSpeech

We provide one model for this recipe: [Pruned stateless RNN-T: Conformer encoder + Embedding decoder + k2 pruned RNN-T loss][WenetSpeech_pruned_transducer_stateless2].

#### Pruned stateless RNN-T: Conformer encoder + Embedding decoder + k2 pruned RNN-T loss (trained with L subset)

| | Dev | Test-Net | Test-Meeting |
|----------------------|-------|----------|--------------|
| greedy search | 7.80 | 8.75 | 13.49 |
| fast beam search | 7.94 | 8.74 | 13.80 |
| modified beam search | 7.76 | 8.71 | 13.41 |

We provide a Colab notebook to run a pre-trained Pruned Transducer Stateless model: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1EV4e1CHa1GZgEF-bZgizqI9RyFFehIiN?usp=sharing)

## Deployment with C++

Expand All @@ -243,10 +272,14 @@ Please see: [![Open In Colab](https://colab.research.google.com/assets/colab-bad
[TED-LIUM3_pruned_transducer_stateless]: egs/tedlium3/ASR/pruned_transducer_stateless
[GigaSpeech_conformer_ctc]: egs/gigaspeech/ASR/conformer_ctc
[GigaSpeech_pruned_transducer_stateless2]: egs/gigaspeech/ASR/pruned_transducer_stateless2
[Aidatatang_200zh_pruned_transducer_stateless2]: egs/aidatatang_200zh/ASR/pruned_transducer_stateless2
[WenetSpeech_pruned_transducer_stateless2]: egs/wenetspeech/ASR/pruned_transducer_stateless2
[yesno]: egs/yesno/ASR
[librispeech]: egs/librispeech/ASR
[aishell]: egs/aishell/ASR
[timit]: egs/timit/ASR
[tedlium3]: egs/tedlium3/ASR
[gigaspeech]: egs/gigaspeech/ASR
[aidatatang_200zh]: egs/aidatatang_200zh/ASR
[wenetspeech]: egs/wenetspeech/ASR
[k2]: https://github.com/k2-fsa/k2
19 changes: 19 additions & 0 deletions egs/wenetspeech/ASR/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,19 @@

# Introduction

This recipe includes some different ASR models trained with WenetSpeech.

[./RESULTS.md](./RESULTS.md) contains the latest results.

# Transducers

There are various folders containing the name `transducer` in this folder.
The following table lists the differences among them.

| | Encoder | Decoder | Comment |
|---------------------------------------|---------------------|--------------------|-----------------------------|
| `pruned_transducer_stateless2` | Conformer(modified) | Embedding + Conv1d | Using k2 pruned RNN-T loss | |

The decoder in `transducer_stateless` is modified from the paper
[Rnn-Transducer with Stateless Prediction Network](https://ieeexplore.ieee.org/document/9054419/).
We place an additional Conv1d layer right after the input embedding layer.
93 changes: 93 additions & 0 deletions egs/wenetspeech/ASR/RESULTS.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,93 @@
## Results

### WenetSpeech char-based training results (Pruned Transducer 2)

#### 2022-05-19

Using the codes from this PR https://github.com/k2-fsa/icefall/pull/349.

When training with the L subset, the WERs are

| | dev | test-net | test-meeting | comment |
|------------------------------------|-------|----------|--------------|------------------------------------------|
| greedy search | 7.80 | 8.75 | 13.49 | --epoch 10, --avg 2, --max-duration 100 |
| modified beam search (beam size 4) | 7.76 | 8.71 | 13.41 | --epoch 10, --avg 2, --max-duration 100 |
| fast beam search (set as default) | 7.94 | 8.74 | 13.80 | --epoch 10, --avg 2, --max-duration 1500 |

The training command for reproducing is given below:

```
export CUDA_VISIBLE_DEVICES="0,1,2,3,4,5,6,7"
./pruned_transducer_stateless2/train.py \
--lang-dir data/lang_char \
--exp-dir pruned_transducer_stateless2/exp \
--world-size 8 \
--num-epochs 15 \
--start-epoch 0 \
--max-duration 180 \
--valid-interval 3000 \
--model-warm-step 3000 \
--save-every-n 8000 \
--training-subset L
```

The tensorboard training log can be found at
https://tensorboard.dev/experiment/wM4ZUNtASRavJx79EOYYcg/#scalars

The decoding command is:
```
epoch=10
avg=2
## greedy search
./pruned_transducer_stateless2/decode.py \
--epoch $epoch \
--avg $avg \
--exp-dir ./pruned_transducer_stateless2/exp \
--lang-dir data/lang_char \
--max-duration 100 \
--decoding-method greedy_search
## modified beam search
./pruned_transducer_stateless2/decode.py \
--epoch $epoch \
--avg $avg \
--exp-dir ./pruned_transducer_stateless2/exp \
--lang-dir data/lang_char \
--max-duration 100 \
--decoding-method modified_beam_search \
--beam-size 4
## fast beam search
./pruned_transducer_stateless2/decode.py \
--epoch $epoch \
--avg $avg \
--exp-dir ./pruned_transducer_stateless2/exp \
--lang-dir data/lang_char \
--max-duration 1500 \
--decoding-method fast_beam_search \
--beam 4 \
--max-contexts 4 \
--max-states 8
```

When training with the M subset, the WERs are

| | dev | test-net | test-meeting | comment |
|------------------------------------|--------|-----------|---------------|-------------------------------------------|
| greedy search | 10.40 | 11.31 | 19.64 | --epoch 29, --avg 11, --max-duration 100 |
| modified beam search (beam size 4) | 9.85 | 11.04 | 18.20 | --epoch 29, --avg 11, --max-duration 100 |
| fast beam search (set as default) | 10.18 | 11.10 | 19.32 | --epoch 29, --avg 11, --max-duration 1500 |


When training with the S subset, the WERs are

| | dev | test-net | test-meeting | comment |
|------------------------------------|--------|-----------|---------------|-------------------------------------------|
| greedy search | 19.92 | 25.20 | 35.35 | --epoch 29, --avg 24, --max-duration 100 |
| modified beam search (beam size 4) | 18.62 | 23.88 | 33.80 | --epoch 29, --avg 24, --max-duration 100 |
| fast beam search (set as default) | 19.31 | 24.41 | 34.87 | --epoch 29, --avg 24, --max-duration 1500 |


A pre-trained model and decoding logs can be found at <https://huggingface.co/luomingshuang/icefall_asr_wenetspeech_pruned_transducer_stateless2>
1 change: 1 addition & 0 deletions egs/wenetspeech/ASR/local/compute_fbank_musan.py
93 changes: 93 additions & 0 deletions egs/wenetspeech/ASR/local/compute_fbank_wenetspeech_dev_test.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,93 @@
#!/usr/bin/env python3
# Copyright 2021 Johns Hopkins University (Piotr Żelasko)
# Copyright 2021 Xiaomi Corp. (Fangjun Kuang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import logging
from pathlib import Path

import torch
from lhotse import (
CutSet,
KaldifeatFbank,
KaldifeatFbankConfig,
LilcomHdf5Writer,
)

# Torch's multithreaded behavior needs to be disabled or
# it wastes a lot of CPU and slow things down.
# Do this outside of main() in case it needs to take effect
# even when we are not invoking the main (e.g. when spawning subprocesses).
torch.set_num_threads(1)
torch.set_num_interop_threads(1)


def compute_fbank_wenetspeech_dev_test():
in_out_dir = Path("data/fbank")
# number of workers in dataloader
num_workers = 42

# number of seconds in a batch
batch_duration = 600

subsets = ("S", "M", "DEV", "TEST_NET", "TEST_MEETING")

device = torch.device("cpu")
if torch.cuda.is_available():
device = torch.device("cuda", 0)
extractor = KaldifeatFbank(KaldifeatFbankConfig(device=device))

logging.info(f"device: {device}")

for partition in subsets:
cuts_path = in_out_dir / f"cuts_{partition}.jsonl.gz"
if cuts_path.is_file():
logging.info(f"{cuts_path} exists - skipping")
continue

raw_cuts_path = in_out_dir / f"cuts_{partition}_raw.jsonl.gz"

logging.info(f"Loading {raw_cuts_path}")
cut_set = CutSet.from_file(raw_cuts_path)

logging.info("Computing features")

cut_set = cut_set.compute_and_store_features_batch(
extractor=extractor,
storage_path=f"{in_out_dir}/feats_{partition}",
num_workers=num_workers,
batch_duration=batch_duration,
storage_type=LilcomHdf5Writer,
)
cut_set = cut_set.trim_to_supervisions(
keep_overlapping=False, min_duration=None
)

logging.info(f"Saving to {cuts_path}")
cut_set.to_file(cuts_path)


def main():
formatter = (
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
)
logging.basicConfig(format=formatter, level=logging.INFO)

compute_fbank_wenetspeech_dev_test()


if __name__ == "__main__":
main()
Loading

0 comments on commit 0e57b30

Please sign in to comment.