-
Notifications
You must be signed in to change notification settings - Fork 319
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add generate_averaged_model.py (#882)
- Loading branch information
Showing
1 changed file
with
203 additions
and
0 deletions.
There are no files selected for viewing
203 changes: 203 additions & 0 deletions
203
egs/librispeech/ASR/pruned_transducer_stateless7/generate_averaged_model.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,203 @@ | ||
#!/usr/bin/env python3 | ||
# | ||
# Copyright 2021-2022 Xiaomi Corporation (Author: Yifan Yang) | ||
# | ||
# See ../../../../LICENSE for clarification regarding multiple authors | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
""" | ||
Usage: | ||
(1) use the checkpoint exp_dir/epoch-xxx.pt | ||
./pruned_transducer_stateless7/generate_averaged_model.py \ | ||
--epoch 28 \ | ||
--avg 15 \ | ||
--exp-dir ./pruned_transducer_stateless7/exp | ||
It will generate a file `epoch-28-avg-15.pt` in the given `exp_dir`. | ||
You can later load it by `torch.load("epoch-28-avg-15.pt")`. | ||
(2) use the checkpoint exp_dir/checkpoint-iter.pt | ||
./pruned_transducer_stateless7/generate_averaged_model.py \ | ||
--iter 22000 \ | ||
--avg 5 \ | ||
--exp-dir ./pruned_transducer_stateless7/exp | ||
It will generate a file `iter-22000-avg-5.pt` in the given `exp_dir`. | ||
You can later load it by `torch.load("iter-22000-avg-5.pt")`. | ||
""" | ||
|
||
|
||
import argparse | ||
from pathlib import Path | ||
from typing import Dict, List | ||
|
||
import sentencepiece as spm | ||
import torch | ||
from asr_datamodule import LibriSpeechAsrDataModule | ||
|
||
from train import add_model_arguments, get_params, get_transducer_model | ||
|
||
from icefall.checkpoint import ( | ||
average_checkpoints_with_averaged_model, | ||
find_checkpoints, | ||
) | ||
|
||
|
||
def get_parser(): | ||
parser = argparse.ArgumentParser( | ||
formatter_class=argparse.ArgumentDefaultsHelpFormatter | ||
) | ||
|
||
parser.add_argument( | ||
"--epoch", | ||
type=int, | ||
default=30, | ||
help="""It specifies the checkpoint to use for decoding. | ||
Note: Epoch counts from 1. | ||
You can specify --avg to use more checkpoints for model averaging.""", | ||
) | ||
|
||
parser.add_argument( | ||
"--iter", | ||
type=int, | ||
default=0, | ||
help="""If positive, --epoch is ignored and it | ||
will use the checkpoint exp_dir/checkpoint-iter.pt. | ||
You can specify --avg to use more checkpoints for model averaging. | ||
""", | ||
) | ||
|
||
parser.add_argument( | ||
"--avg", | ||
type=int, | ||
default=9, | ||
help="Number of checkpoints to average. Automatically select " | ||
"consecutive checkpoints before the checkpoint specified by " | ||
"'--epoch' and '--iter'", | ||
) | ||
|
||
parser.add_argument( | ||
"--exp-dir", | ||
type=str, | ||
default="pruned_transducer_stateless7/exp", | ||
help="The experiment dir", | ||
) | ||
|
||
parser.add_argument( | ||
"--bpe-model", | ||
type=str, | ||
default="data/lang_bpe_500/bpe.model", | ||
help="Path to the BPE model", | ||
) | ||
|
||
parser.add_argument( | ||
"--context-size", | ||
type=int, | ||
default=2, | ||
help="The context size in the decoder. 1 means bigram; 2 means tri-gram", | ||
) | ||
|
||
add_model_arguments(parser) | ||
|
||
return parser | ||
|
||
|
||
@torch.no_grad() | ||
def main(): | ||
parser = get_parser() | ||
LibriSpeechAsrDataModule.add_arguments(parser) | ||
args = parser.parse_args() | ||
args.exp_dir = Path(args.exp_dir) | ||
|
||
params = get_params() | ||
params.update(vars(args)) | ||
|
||
if params.iter > 0: | ||
params.suffix = f"iter-{params.iter}-avg-{params.avg}" | ||
else: | ||
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}" | ||
|
||
print("Script started") | ||
|
||
device = torch.device("cpu") | ||
print(f"Device: {device}") | ||
|
||
sp = spm.SentencePieceProcessor() | ||
sp.load(params.bpe_model) | ||
|
||
# <blk> is defined in local/train_bpe_model.py | ||
params.blank_id = sp.piece_to_id("<blk>") | ||
params.unk_id = sp.piece_to_id("<unk>") | ||
params.vocab_size = sp.get_piece_size() | ||
|
||
print("About to create model") | ||
model = get_transducer_model(params) | ||
|
||
if params.iter > 0: | ||
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ | ||
: params.avg + 1 | ||
] | ||
if len(filenames) == 0: | ||
raise ValueError( | ||
f"No checkpoints found for --iter {params.iter}, --avg {params.avg}" | ||
) | ||
elif len(filenames) < params.avg + 1: | ||
raise ValueError( | ||
f"Not enough checkpoints ({len(filenames)}) found for" | ||
f" --iter {params.iter}, --avg {params.avg}" | ||
) | ||
filename_start = filenames[-1] | ||
filename_end = filenames[0] | ||
print( | ||
"Calculating the averaged model over iteration checkpoints" | ||
f" from {filename_start} (excluded) to {filename_end}" | ||
) | ||
model.to(device) | ||
model.load_state_dict( | ||
average_checkpoints_with_averaged_model( | ||
filename_start=filename_start, | ||
filename_end=filename_end, | ||
device=device, | ||
) | ||
) | ||
filename = params.exp_dir / f"iter-{params.iter}-avg-{params.avg}.pt" | ||
torch.save({"model": model.state_dict()}, filename) | ||
else: | ||
assert params.avg > 0, params.avg | ||
start = params.epoch - params.avg | ||
assert start >= 1, start | ||
filename_start = f"{params.exp_dir}/epoch-{start}.pt" | ||
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt" | ||
print( | ||
f"Calculating the averaged model over epoch range from " | ||
f"{start} (excluded) to {params.epoch}" | ||
) | ||
model.to(device) | ||
model.load_state_dict( | ||
average_checkpoints_with_averaged_model( | ||
filename_start=filename_start, | ||
filename_end=filename_end, | ||
device=device, | ||
) | ||
) | ||
filename = params.exp_dir / f"epoch-{params.epoch}-avg-{params.avg}.pt" | ||
torch.save({"model": model.state_dict()}, filename) | ||
|
||
num_param = sum([p.numel() for p in model.parameters()]) | ||
print(f"Number of model parameters: {num_param}") | ||
|
||
print("Done!") | ||
|
||
|
||
if __name__ == "__main__": | ||
main() |