-
Notifications
You must be signed in to change notification settings - Fork 468
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add a VAD Python example to remove silences from a file. (#963)
- Loading branch information
1 parent
9edb78e
commit b31b9f3
Showing
1 changed file
with
116 additions
and
0 deletions.
There are no files selected for viewing
116 changes: 116 additions & 0 deletions
116
python-api-examples/vad-remove-non-speech-segments-from-file.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,116 @@ | ||
#!/usr/bin/env python3 | ||
|
||
""" | ||
This file shows how to remove non-speech segments | ||
and merge all speech segments into a large segment | ||
and save it to a file. | ||
Usage | ||
python3 ./vad-remove-non-speech-segments-from-file.py \ | ||
--silero-vad-model silero_vad.onnx \ | ||
input.wav \ | ||
output.wav | ||
Please visit | ||
https://github.com/snakers4/silero-vad/blob/master/files/silero_vad.onnx | ||
to download silero_vad.onnx | ||
For instance, | ||
wget https://github.com/snakers4/silero-vad/raw/master/files/silero_vad.onnx | ||
""" | ||
|
||
import argparse | ||
from pathlib import Path | ||
from typing import Tuple | ||
|
||
import numpy as np | ||
import sherpa_onnx | ||
import soundfile as sf | ||
|
||
|
||
def assert_file_exists(filename: str): | ||
assert Path(filename).is_file(), ( | ||
f"{filename} does not exist!\n" | ||
"Please refer to " | ||
"https://k2-fsa.github.io/sherpa/onnx/pretrained_models/index.html to download it" | ||
) | ||
|
||
|
||
def get_args(): | ||
parser = argparse.ArgumentParser( | ||
formatter_class=argparse.ArgumentDefaultsHelpFormatter | ||
) | ||
|
||
parser.add_argument( | ||
"--silero-vad-model", | ||
type=str, | ||
required=True, | ||
help="Path to silero_vad.onnx", | ||
) | ||
|
||
parser.add_argument( | ||
"input", | ||
type=str, | ||
help="Path to input.wav", | ||
) | ||
|
||
parser.add_argument( | ||
"output", | ||
type=str, | ||
help="Path to output.wav", | ||
) | ||
|
||
return parser.parse_args() | ||
|
||
|
||
def load_audio(filename: str) -> Tuple[np.ndarray, int]: | ||
data, sample_rate = sf.read( | ||
filename, | ||
always_2d=True, | ||
dtype="float32", | ||
) | ||
data = data[:, 0] # use only the first channel | ||
samples = np.ascontiguousarray(data) | ||
return samples, sample_rate | ||
|
||
|
||
def main(): | ||
args = get_args() | ||
assert_file_exists(args.silero_vad_model) | ||
assert_file_exists(args.input) | ||
|
||
samples, sample_rate = load_audio(args.input) | ||
if sample_rate != 16000: | ||
import librosa | ||
|
||
samples = librosa.resample(samples, orig_sr=sample_rate, target_sr=16000) | ||
sample_rate = 16000 | ||
|
||
config = sherpa_onnx.VadModelConfig() | ||
config.silero_vad.model = args.silero_vad_model | ||
config.sample_rate = sample_rate | ||
|
||
window_size = config.silero_vad.window_size | ||
|
||
vad = sherpa_onnx.VoiceActivityDetector(config, buffer_size_in_seconds=30) | ||
|
||
speech_samples = [] | ||
while len(samples) > window_size: | ||
vad.accept_waveform(samples[:window_size]) | ||
samples = samples[window_size:] | ||
|
||
while not vad.empty(): | ||
speech_samples.extend(vad.front.samples) | ||
vad.pop() | ||
|
||
speech_samples = np.array(speech_samples, dtype=np.float32) | ||
|
||
sf.write(args.output, speech_samples, samplerate=sample_rate) | ||
|
||
print(f"Saved to {args.output}") | ||
|
||
|
||
if __name__ == "__main__": | ||
main() |