Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Support whisper large/large-v1/large-v2/large-v3 and distil-large-v2 #1114

Merged
merged 15 commits into from
Jul 12, 2024

Conversation

csukuangfj
Copy link
Collaborator

@csukuangfj csukuangfj commented Jul 12, 2024

@csukuangfj
Copy link
Collaborator Author

Here is the RTF about running whisper large v3 on NVIDIA GPU using google colab, which provides Tesla T4.

Fri Jul 12 15:44:09 2024       
+---------------------------------------------------------------------------------------+
| NVIDIA-SMI 535.104.05             Driver Version: 535.104.05   CUDA Version: 12.2     |
|-----------------------------------------+----------------------+----------------------+
| GPU  Name                 Persistence-M | Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp   Perf          Pwr:Usage/Cap |         Memory-Usage | GPU-Util  Compute M. |
|                                         |                      |               MIG M. |
|=========================================+======================+======================|
|   0  Tesla T4                       Off | 00000000:00:04.0 Off |                    0 |
| N/A   75C    P0              31W /  70W |    105MiB / 15360MiB |      0%      Default |
|                                         |                      |                  N/A |
+-----------------------------------------+----------------------+----------------------+
                                                                                         
+---------------------------------------------------------------------------------------+
| Processes:                                                                            |
|  GPU   GI   CI        PID   Type   Process name                            GPU Memory |
|        ID   ID                                                             Usage      |
|=======================================================================================|
+---------------------------------------------------------------------------------------+
/content/sherpa-onnx/sherpa-onnx/csrc/parse-options.cc:Read:375 /content/sherpa-onnx/build/bin/sherpa-onnx-offline --whisper-encoder=./large-v3-encoder.onnx --whisper-decoder=./large-v3-decoder.onnx --tokens=./large-v3-tokens.txt --provider=cuda --num-threads=2 ./test_wavs/0.wav 

OfflineRecognizerConfig(feat_config=FeatureExtractorConfig(sampling_rate=16000, feature_dim=80, low_freq=20, high_freq=-400, dither=0), model_config=OfflineModelConfig(transducer=OfflineTransducerModelConfig(encoder_filename="", decoder_filename="", joiner_filename=""), paraformer=OfflineParaformerModelConfig(model=""), nemo_ctc=OfflineNemoEncDecCtcModelConfig(model=""), whisper=OfflineWhisperModelConfig(encoder="./large-v3-encoder.onnx", decoder="./large-v3-decoder.onnx", language="", task="transcribe", tail_paddings=-1), tdnn=OfflineTdnnModelConfig(model=""), zipformer_ctc=OfflineZipformerCtcModelConfig(model=""), wenet_ctc=OfflineWenetCtcModelConfig(model=""), telespeech_ctc="", tokens="./large-v3-tokens.txt", num_threads=2, debug=False, provider="cuda", model_type="", modeling_unit="cjkchar", bpe_vocab=""), lm_config=OfflineLMConfig(model="", scale=0.5), ctc_fst_decoder_config=OfflineCtcFstDecoderConfig(graph="", max_active=3000), decoding_method="greedy_search", max_active_paths=4, hotwords_file="", hotwords_score=1.5, blank_penalty=0, rule_fsts="", rule_fars="")
Creating recognizer ...
Started
Done!

./test_wavs/0.wav
{"text": " after early nightfall the yellow lamps would light up here and there the squalid quarter of the brothels", "timestamps": [], "tokens":[" after", " early", " night", "fall", " the", " yellow", " lamps", " would", " light", " up", " here", " and", " there", " the", " squ", "alid", " quarter", " of", " the", " broth", "els"], "words": []}
----
num threads: 2
decoding method: greedy_search
Elapsed seconds: 5.868 s
Real time factor (RTF): 5.868 / 6.625 = 0.886

real	0m35.402s
user	0m13.369s
sys	0m5.118s

@csukuangfj csukuangfj merged commit 117cd7b into k2-fsa:master Jul 12, 2024
146 of 187 checks passed
@csukuangfj csukuangfj deleted the onnx-whisper-large-v3 branch July 12, 2024 15:47
@csukuangfj
Copy link
Collaborator Author

csukuangfj commented Jul 12, 2024

By the way, the RTF is less than 1 when Tesla T4 GPU is used for whisper large v3.

Screenshot 2024-07-13 at 12 01 38

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

1 participant