Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

🏄‍♂️ Add test code and Runpod platform support #78

Merged
merged 3 commits into from
May 4, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
26 changes: 14 additions & 12 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -39,11 +39,9 @@ from transformers import BitsAndBytesConfig, HqqConfig
url = "https://www.youtube.com/watch?v=di3rHkEZuUw"
audio_path = download_and_convert_to_mp3(url)

quant_config = HqqConfig(
nbits=1,
group_size=64,
quant_zero=False,
quant_scale=False, axis=0) #axis=0 is used by default
quant_config = HqqConfig(
nbits=1, group_size=64, quant_zero=False, quant_scale=False, axis=0
) # axis=0 is used by default


bnb_config = BitsAndBytesConfig(
Expand All @@ -53,14 +51,18 @@ bnb_config = BitsAndBytesConfig(
bnb_4bit_use_double_quant=True,
)

pipeline = SpeechToTextPipeline(model_id=distil-whisper/distil-large-v3, quant_config=quant_config) # or bnb_config
pipeline = SpeechToTextPipeline(
model_id="distil-whisper/distil-large-v3", quant_config=quant_config
) # or bnb_config

transcript = pipeline(
audio_path: str = "test.mp3",
chunk_length_s: int = 30,
stride_length_s: int = 5,
max_new_tokens: int = 128,
batch_size: int = 100,
language: str = "english",
audio_path="test.mp3",
chunk_length_s=30,
stride_length_s=5,
max_new_tokens=128,
batch_size=100,
language="english",
return_timestamps=False,
)

print(transcript)
Expand Down
1 change: 1 addition & 0 deletions requirements.txt
Original file line number Diff line number Diff line change
Expand Up @@ -19,3 +19,4 @@ pre-commit==3.4.0
autollm>=0.1.9
speechbrain>=0.5.16
bitsandbytes
hqq
2 changes: 2 additions & 0 deletions scripts/runpod.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,2 @@
apt-get update
apt install ffmpeg nvtop -y
21 changes: 8 additions & 13 deletions whisperplus/pipelines/whisper.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,6 @@
import logging

import torch
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline

logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
Expand All @@ -8,7 +9,7 @@
class SpeechToTextPipeline:
"""Class for converting audio to text using a pre-trained speech recognition model."""

def __init__(self, model_id: str = "openai/whisper-large-v3", quant_config=None):
def __init__(self, model_id: str = "distil-whisper/distil-large-v3", quant_config=None):
self.model = None
self.device = None

Expand All @@ -17,21 +18,16 @@ def __init__(self, model_id: str = "openai/whisper-large-v3", quant_config=None)
else:
logging.info("Model already loaded.")

def load_model(self, model_id: str = "openai/whisper-large-v3", quant_config=None):
"""
Loads the pre-trained speech recognition model and moves it to the specified device.

Args:
model_id (str): Identifier of the pre-trained model to be loaded.
"""
logging.info("Loading model...")
def load_model(self, model_id: str = "distil-whisper/distil-large-v3", quant_config=None):
model = AutoModelForSpeechSeq2Seq.from_pretrained(
model_id,
quantization_config=quant_config,
low_cpu_mem_usage=True,
use_safetensors=True,
attn_implementation="flash_attention_2",
)
torch_dtype=torch.float16,
device_map='auto',
max_memory={0: "24GiB"})
logging.info("Model loaded successfully.")

processor = AutoProcessor.from_pretrained(model_id)
Expand All @@ -41,14 +37,13 @@ def load_model(self, model_id: str = "openai/whisper-large-v3", quant_config=Non

def __call__(
self,
audio_path: str = "test.mp3",
chunk_length_s: int = 30,
stride_length_s: int = 5,
audio_path: str = "test.mp3",
max_new_tokens: int = 128,
batch_size: int = 100,
language: str = "turkish",
return_timestamps: bool = False
):
return_timestamps: bool = False):
"""
Converts audio to text using the pre-trained speech recognition model.

Expand Down
39 changes: 39 additions & 0 deletions whisperplus/test.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,39 @@
import time

import torch
from pipelines.whisper import SpeechToTextPipeline
from transformers import BitsAndBytesConfig, HqqConfig
from utils.download_utils import download_and_convert_to_mp3

url = "https://www.youtube.com/watch?v=di3rHkEZuUw"
audio_path = download_and_convert_to_mp3(url)

hqq_config = HqqConfig(
nbits=1, group_size=64, quant_zero=False, quant_scale=False, axis=0) # axis=0 is used by default

bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_use_double_quant=True,
)
model = SpeechToTextPipeline(
model_id="distil-whisper/distil-large-v3", quant_config=bnb_config) # or bnb_config

start_event = torch.cuda.Event(enable_timing=True)
end_event = torch.cuda.Event(enable_timing=True)

start_event.record()
transcript = model(
audio_path="testv0.mp3",
chunk_length_s=30,
stride_length_s=5,
max_new_tokens=128,
batch_size=100,
language="english",
return_timestamps=False)
end_event.record()

torch.cuda.synchronize()
elapsed_time_ms = start_event.elapsed_time(end_event)
print(f"Execution time: {elapsed_time_ms}ms")
Loading