Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add Hqq + Compile + Flash Attention support #97

Merged
merged 1 commit into from
May 9, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
92 changes: 65 additions & 27 deletions whisperplus/pipelines/whisper.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,14 +11,15 @@ class SpeechToTextPipeline:
"""Class for converting audio to text using a pre-trained speech recognition model."""

def __init__(
self,
model_id: str = "distil-whisper/distil-large-v3",
quant_config=None,
hqq: Optional[bool] = True,
flash_attention_2: Optional[bool] = True):
self,
model_id: str = "distil-whisper/distil-large-v3",
quant_config=None,
flash_attention_2: Optional[bool] = True,
hqq_compile: Optional[bool] = True,
):
self.model = None
self.device = None
self.hqq = hqq
self.hqq_compile = hqq_compile
self.flash_attention_2 = flash_attention_2

if self.model is None:
Expand All @@ -27,34 +28,71 @@ def __init__(
logging.info("Model already loaded.")

def load_model(self, model_id: str = "distil-whisper/distil-large-v3", quant_config=None):
if self.hqq:
if self.hqq_compile:
import hqq.models.base as hqq_base
import torch._dynamo
from hqq.core.quantize import HQQBackend, HQQLinear
HQQLinear.set_backend(HQQBackend.PYTORCH) # Pytorch backend
HQQLinear.set_backend(HQQBackend.PYTORCH_COMPILE) # Compiled Pytorch via dynamo
HQQLinear.set_backend(
HQQBackend.ATEN) # C++ Aten/CUDA backend (set automatically by default if available)
from hqq.models.hf.base import AutoHQQHFModel
from hqq.utils.patching import prepare_for_inference

if self.flash_attention_2:
attn_implementation = "flash_attention_2"
else:
attn_implementation = "sdpa"

model = AutoModelForSpeechSeq2Seq.from_pretrained(
model_id,
quantization_config=quant_config,
low_cpu_mem_usage=True,
use_safetensors=True,
attn_implementation=attn_implementation,
torch_dtype=torch.bfloat16,
device_map='auto',
)
logging.info("Model loaded successfully.")
torch._dynamo.config.suppress_errors = True

model = AutoModelForSpeechSeq2Seq.from_pretrained(
model_id, torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2")

processor = AutoProcessor.from_pretrained(model_id)

# Please keep nbits=4 and axis=1
HQQLinear.set_backend(HQQBackend.PYTORCH)

AutoHQQHFModel.quantize_model(
model.model.encoder,
quant_config=quant_config,
compute_dtype=torch.bfloat16,
device=self.device)
AutoHQQHFModel.quantize_model(
model.model.decoder,
quant_config=quant_config,
compute_dtype=torch.bfloat16,
device=self.device)

processor = AutoProcessor.from_pretrained(model_id)
# Replace HQQLinear layers matmuls to support int4 mm
hqq_base._QUANT_LAYERS = [torch.nn.Linear, HQQLinear]
AutoHQQHFModel.set_auto_linear_tags(model.model.encoder)
prepare_for_inference(model.model.encoder)

AutoHQQHFModel.set_auto_linear_tags(model.model.decoder)
prepare_for_inference(model.model.decoder, backend="torchao_int4")

model.model.encoder.forward = torch.compile(
model.model.encoder.forward, mode="reduce-overhead", fullgraph=True)
model.model.decoder.forward = torch.compile(
model.model.decoder.forward, mode="reduce-overhead", fullgraph=True)

elif self.hqq_compile is False:
if self.flash_attention_2:
attn_implementation = "flash_attention_2"
else:
attn_implementation = "sdpa"

model = AutoModelForSpeechSeq2Seq.from_pretrained(
model_id,
quantization_config=quant_config,
low_cpu_mem_usage=True,
use_safetensors=True,
attn_implementation=attn_implementation,
torch_dtype=torch.bfloat16,
device_map=self.device)

logging.info("Model loaded successfully.")

processor = AutoProcessor.from_pretrained(model_id)

self.processor = processor
self.model = model

return model

def __call__(
self,
audio_path: str = "test.mp3",
Expand Down
Loading