Skip to content

kbaltakys/spark-analysis

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

89 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Build Status

Spark Analysis

Analyzing large datasets using spark

Installation

python setup.py sdist to make the distribution. pip install ./ to install (run from parent directory)

#Directory Structures (Before Installation) Place 'etc' and 'spark_jars' in the shared data folder of your cluster. Create tmp and mods directories in shared data folder itself. Edit the config.yml template in etc. Be sure to provide the read and write access to all the 4 directories. Also make sure, the input files should be somewhere in shared data folder for all the spark workers to read

Example Usage

from sparkles.modules.utils.runner import SparkRunner
sr = SparkRunner('path/to/config.yml')
sr.import_dataset(inputs='/path/to/filename.extension',userdatadir='swift://containerFiles.SparkTest',description='description of dataset',details='details')
sr.import_analysis(name='modulename', description='description', details='details', filepath='/path/to/module.py', params='params that are used in module', inputs='type of input it reads', outputs='kind of output it generates')

params = {'tablename': 'ORDERS', 'start_time': 1349159961001, 'end_time': 1349160643001, 'interval': 60}
inputs = ['filename']
sr.run_analysis(modulename='modulename', params=params, inputs=inputs)

If you need to generate a feature set out of the modules

features = {'userdatadir': 'swift://containerFeatures.SparkTest', 'description': 'something', 'details': 'something', 'modulename': 'module used to create this', 'featureset_name': 'featuresetname'}
params = {'tablename': 'ORDERS', 'start_time': 1349159961001, 'end_time': 1349160643001, 'interval': 60}
inputs = ['filename']

sr.run_analysis(modulename='modulename', params=params, inputs=inputs, features=features)

About

Analyzing large datasets using spark

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 100.0%