Skip to content

kebaek/homework_fall2019

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

1) install package by running:

$ python setup.py develop

##############################################
##############################################

2)install mujoco:
$ cd ~
$ mkdir .mujoco
$ cd <location_of_your_mjkey.txt>
$ cp mjkey.txt ~/.mujoco/
$ cd <this_repo>/downloads
$ cp -r mjpro150 ~/.mujoco/

add the following to bottom of your bashrc:
export LD_LIBRARY_PATH=~/.mujoco/mjpro150/bin/

NOTE IF YOU'RE USING A MAC:
The provided mjpro150 folder is for Linux. 
Please download the OSX version yourself, from https://www.roboti.us/index.html

##############################################
##############################################

3)install other dependencies

-------------------

a) [PREFERRED] Option A:

i) install anaconda, if you don't already have it:
Download Anaconda2 (suggested v5.2 for linux): https://www.continuum.io/downloads
$ cd Downloads
$ bash Anaconda2-5.2.0-Linux-x86_64.sh #file name might be slightly different, but follows this format

Note that this install will modify the PATH variable in your bashrc.
You need to open a new terminal for that path change to take place (to be able to find 'conda' in the next step).

ii) create a conda env that will contain python 3:
$ conda create -n cs285_env python=3.5

iii) activate the environment (do this every time you open a new terminal and want to run code):
$ source activate cs285_env

iv) install the requirements into this conda env
$ pip install --user --requirement requirements.txt

v) allow your code to be able to see 'cs285'
$ cd <path_to_hw>
$ pip install -e .

Note: This conda environment requires activating it every time you open a new terminal (in order to run code), but the benefit is that the required dependencies for this codebase will not affect existing/other versions of things on your computer. This stand-alone environment will have everything that is necessary.

-------------------

b) Option B:

install dependencies locally, by running:
$ pip install -r requirements.txt

##############################################
##############################################

4) code:

Blanks to be filled in are marked with "TODO"
The following files have blanks in them:
- scripts/run_hw1_behavior_cloning.py
- infrastructure/rl_trainer.py
- agents/bc_agent.py
- policies/MLP_policy.py
- infrastructure/replay_buffer.py
- infrastructure/utils.py
- infrastructure/tf_utils.py

See the code + the hw pdf for more details.

##############################################
##############################################

5) run code: 

Run the following command for Section 1 (Behavior Cloning):

$ python cs285/scripts/run_hw1_behavior_cloning.py --expert_policy_file cs285/policies/experts/Ant.pkl --env_name Ant-v2 --exp_name test_bc_ant --n_iter 1 --expert_data cs285/expert_data/expert_data_Ant-v2.pkl

Run the following command for Section 2 (DAGGER):
(NOTE: the --do_dagger flag, and the higher value for n_iter)

$ python cs285/scripts/run_hw1_behavior_cloning.py --expert_policy_file cs285/policies/experts/Ant.pkl --env_name Ant-v2 --exp_name test_dagger_ant --n_iter 10 --do_dagger --expert_data cs285/expert_data/expert_data_Ant-v2.pkl

##############################################

6) visualize saved tensorboard event file:

$ cd cs285/data/<your_log_dir>
$ tensorboard --logdir .

Then, navigate to shown url to see scalar summaries as plots (in 'scalar' tab), as well as videos (in 'images' tab)

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • C 50.9%
  • C++ 39.8%
  • Python 9.1%
  • Makefile 0.2%