forked from berkeleydeeprlcourse/homework_fall2019
-
Notifications
You must be signed in to change notification settings - Fork 0
kebaek/homework_fall2019
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
1) install package by running: $ python setup.py develop ############################################## ############################################## 2)install mujoco: $ cd ~ $ mkdir .mujoco $ cd <location_of_your_mjkey.txt> $ cp mjkey.txt ~/.mujoco/ $ cd <this_repo>/downloads $ cp -r mjpro150 ~/.mujoco/ add the following to bottom of your bashrc: export LD_LIBRARY_PATH=~/.mujoco/mjpro150/bin/ NOTE IF YOU'RE USING A MAC: The provided mjpro150 folder is for Linux. Please download the OSX version yourself, from https://www.roboti.us/index.html ############################################## ############################################## 3)install other dependencies ------------------- a) [PREFERRED] Option A: i) install anaconda, if you don't already have it: Download Anaconda2 (suggested v5.2 for linux): https://www.continuum.io/downloads $ cd Downloads $ bash Anaconda2-5.2.0-Linux-x86_64.sh #file name might be slightly different, but follows this format Note that this install will modify the PATH variable in your bashrc. You need to open a new terminal for that path change to take place (to be able to find 'conda' in the next step). ii) create a conda env that will contain python 3: $ conda create -n cs285_env python=3.5 iii) activate the environment (do this every time you open a new terminal and want to run code): $ source activate cs285_env iv) install the requirements into this conda env $ pip install --user --requirement requirements.txt v) allow your code to be able to see 'cs285' $ cd <path_to_hw> $ pip install -e . Note: This conda environment requires activating it every time you open a new terminal (in order to run code), but the benefit is that the required dependencies for this codebase will not affect existing/other versions of things on your computer. This stand-alone environment will have everything that is necessary. ------------------- b) Option B: install dependencies locally, by running: $ pip install -r requirements.txt ############################################## ############################################## 4) code: Blanks to be filled in are marked with "TODO" The following files have blanks in them: - scripts/run_hw1_behavior_cloning.py - infrastructure/rl_trainer.py - agents/bc_agent.py - policies/MLP_policy.py - infrastructure/replay_buffer.py - infrastructure/utils.py - infrastructure/tf_utils.py See the code + the hw pdf for more details. ############################################## ############################################## 5) run code: Run the following command for Section 1 (Behavior Cloning): $ python cs285/scripts/run_hw1_behavior_cloning.py --expert_policy_file cs285/policies/experts/Ant.pkl --env_name Ant-v2 --exp_name test_bc_ant --n_iter 1 --expert_data cs285/expert_data/expert_data_Ant-v2.pkl Run the following command for Section 2 (DAGGER): (NOTE: the --do_dagger flag, and the higher value for n_iter) $ python cs285/scripts/run_hw1_behavior_cloning.py --expert_policy_file cs285/policies/experts/Ant.pkl --env_name Ant-v2 --exp_name test_dagger_ant --n_iter 10 --do_dagger --expert_data cs285/expert_data/expert_data_Ant-v2.pkl ############################################## 6) visualize saved tensorboard event file: $ cd cs285/data/<your_log_dir> $ tensorboard --logdir . Then, navigate to shown url to see scalar summaries as plots (in 'scalar' tab), as well as videos (in 'images' tab)
About
No description, website, or topics provided.
Resources
Stars
Watchers
Forks
Releases
No releases published
Packages 0
No packages published
Languages
- C 50.9%
- C++ 39.8%
- Python 9.1%
- Makefile 0.2%