Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
24 commits
Select commit Hold shift + click to select a range
087b9b2
Update backbone.py
pctablet505 Sep 1, 2025
de830b1
Update backbone.py
pctablet505 Sep 1, 2025
62d2484
Update task.py
pctablet505 Sep 1, 2025
3b71125
Revert "Update task.py"
pctablet505 Sep 2, 2025
3d453ff
Revert "Update backbone.py"
pctablet505 Sep 2, 2025
92b1254
export
pctablet505 Sep 9, 2025
e46241d
refactoring
pctablet505 Sep 10, 2025
6e970e2
refactor
pctablet505 Sep 10, 2025
15ad9f3
Update registry.py
pctablet505 Sep 10, 2025
02ca0d9
Refactor export logic and improve error handling
pctablet505 Sep 15, 2025
901c233
Merge branch 'keras-team:master' into export
pctablet505 Sep 17, 2025
442fdd3
reformat
pctablet505 Sep 22, 2025
5446e2a
Add export submodule to keras_hub API
pctablet505 Sep 22, 2025
5c31d88
reformat
pctablet505 Sep 22, 2025
3290d42
now supporting export for objectDetectors
pctablet505 Sep 23, 2025
8b1024f
Add and refine image model exporter configs
pctablet505 Sep 23, 2025
8df5a75
Refactor: move keras import to module level
pctablet505 Sep 24, 2025
759d223
Remove debug_object_detection.py script
pctablet505 Sep 24, 2025
0737c93
Rename LiteRT to Litert and update exporter configs
pctablet505 Oct 3, 2025
c733e18
Refactor InputSpec formatting and fix import path
pctablet505 Oct 6, 2025
5ab911f
Refactor exporter configs and model building logic
pctablet505 Oct 9, 2025
c1e26dd
Refactor export initialization and improve warnings
pctablet505 Oct 9, 2025
6fa8379
Improve dtype handling and verbose output in exporters
pctablet505 Oct 9, 2025
81c6ed5
Remove get_dummy_inputs methods from exporter configs
pctablet505 Oct 13, 2025
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions keras_hub/api/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,7 @@
since your modifications would be overwritten.
"""

from keras_hub import export as export
from keras_hub import layers as layers
from keras_hub import metrics as metrics
from keras_hub import models as models
Expand Down
28 changes: 28 additions & 0 deletions keras_hub/api/export/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,28 @@
"""DO NOT EDIT.

This file was autogenerated. Do not edit it by hand,
since your modifications would be overwritten.
"""

from keras_hub.src.export.configs import (
CausalLMExporterConfig as CausalLMExporterConfig,
)
from keras_hub.src.export.configs import (
ImageClassifierExporterConfig as ImageClassifierExporterConfig,
)
from keras_hub.src.export.configs import (
ImageSegmenterExporterConfig as ImageSegmenterExporterConfig,
)
from keras_hub.src.export.configs import (
ObjectDetectorExporterConfig as ObjectDetectorExporterConfig,
)
from keras_hub.src.export.configs import (
Seq2SeqLMExporterConfig as Seq2SeqLMExporterConfig,
)
from keras_hub.src.export.configs import (
TextClassifierExporterConfig as TextClassifierExporterConfig,
)
from keras_hub.src.export.configs import (
TextModelExporterConfig as TextModelExporterConfig,
)
from keras_hub.src.export.litert import LitertExporter as LitertExporter
9 changes: 9 additions & 0 deletions keras_hub/src/export/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,9 @@
from keras_hub.src.export.base import ExporterRegistry
from keras_hub.src.export.base import KerasHubExporter
from keras_hub.src.export.base import KerasHubExporterConfig
from keras_hub.src.export.configs import CausalLMExporterConfig
from keras_hub.src.export.configs import Seq2SeqLMExporterConfig
from keras_hub.src.export.configs import TextClassifierExporterConfig
from keras_hub.src.export.configs import TextModelExporterConfig
from keras_hub.src.export.litert import LitertExporter
from keras_hub.src.export.litert import export_litert
248 changes: 248 additions & 0 deletions keras_hub/src/export/base.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,248 @@
"""Base classes for Keras-Hub model exporters.

This module provides the foundation for exporting Keras-Hub models to various
formats. It follows the Optimum pattern of having different exporters for
different model types and formats.
"""

from abc import ABC
from abc import abstractmethod

try:
import keras

KERAS_AVAILABLE = True
except ImportError:
KERAS_AVAILABLE = False
keras = None


class KerasHubExporterConfig(ABC):
"""Base configuration class for Keras-Hub model exporters.

This class defines the interface for exporter configurations that specify
how different types of Keras-Hub models should be exported.
"""

# Model type this exporter handles (e.g., "causal_lm", "text_classifier")
MODEL_TYPE = None

# Expected input structure for this model type
EXPECTED_INPUTS = []

# Default sequence length if not specified
DEFAULT_SEQUENCE_LENGTH = 128

def __init__(self, model, **kwargs):
"""Initialize the exporter configuration.

Args:
model: `keras.Model`. The Keras-Hub model to export.
**kwargs: Additional configuration parameters.
"""
self.model = model
self.config_kwargs = kwargs
self._validate_model()

def _validate_model(self):
"""Validate that the model is compatible with this exporter."""
if not self._is_model_compatible():
raise ValueError(
f"Model {self.model.__class__.__name__} is not compatible "
f"with {self.__class__.__name__}"
)

@abstractmethod
def _is_model_compatible(self):
"""Check if the model is compatible with this exporter.

Returns:
bool: True if compatible, False otherwise
"""
pass

@abstractmethod
def get_input_signature(self, sequence_length=None):
"""Get the input signature for this model type.

Args:
sequence_length: `int` or `None`. Optional sequence length for
input tensors.

Returns:
A dictionary mapping input names to their tensor specifications.
"""
pass


class KerasHubExporter(ABC):
"""Base class for Keras-Hub model exporters.

This class provides the common interface for exporting Keras-Hub models
to different formats (LiteRT, ONNX, etc.).
"""

def __init__(self, config, **kwargs):
"""Initialize the exporter.

Args:
config: `KerasHubExporterConfig`. Exporter configuration specifying
model type and parameters.
**kwargs: Additional exporter-specific parameters.
"""
self.config = config
self.model = config.model
self.export_kwargs = kwargs

@abstractmethod
def export(self, filepath):
"""Export the model to the specified filepath.

Args:
filepath: `str`. Path where to save the exported model.
"""
pass

def _ensure_model_built(self, param=None):
"""Ensure the model is properly built with correct input structure.

This method builds the model using model.build() with input shapes.
This creates the necessary variables and initializes the model structure
for export without needing dummy data.

Args:
param: `int` or `None`. Optional parameter for input signature
(e.g., sequence_length for text models, image_size for vision
models).
"""
# Get input signature (returns dict of InputSpec objects)
input_signature = self.config.get_input_signature(param)

# Extract shapes from InputSpec objects
input_shapes = {}
for name, spec in input_signature.items():
if hasattr(spec, "shape"):
input_shapes[name] = spec.shape
else:
# Fallback for unexpected formats
input_shapes[name] = spec

# Build the model using shapes only (no actual data allocation)
# This creates variables and initializes the model structure
self.model.build(input_shape=input_shapes)


class ExporterRegistry:
"""Registry for mapping model types to their appropriate exporters."""

_configs = {}
_exporters = {}

@classmethod
def register_config(cls, model_type, config_class):
"""Register a configuration class for a model type.

Args:
model_type: The model type (e.g., "causal_lm")
config_class: The configuration class
"""
Comment on lines +142 to +148
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

medium

The docstrings for register_config, register_exporter, get_config_for_model, get_exporter, and _detect_model_type are missing type information in the Args section. According to the style guide, type information should be provided in the format arg_name: type. description.1

For example, this docstring should be:

        Args:
            model_type: str. The model type (e.g., "causal_lm").
            config_class: KerasHubExporterConfig. The configuration class.

Please update the docstrings for all class methods in ExporterRegistry to include type information.

Style Guide References

Footnotes

  1. The style guide requires type information to be provided in the Args section of docstrings.

cls._configs[model_type] = config_class

@classmethod
def register_exporter(cls, format_name, exporter_class):
"""Register an exporter class for a format.

Args:
format_name: The export format (e.g., "litert")
exporter_class: The exporter class
"""
cls._exporters[format_name] = exporter_class

@classmethod
def get_config_for_model(cls, model):
"""Get the appropriate configuration for a model.

Args:
model: The Keras-Hub model

Returns:
KerasHubExporterConfig: An appropriate exporter configuration
instance

Raises:
ValueError: If no configuration is found for the model type
"""
model_type = cls._detect_model_type(model)

if model_type not in cls._configs:
raise ValueError(
f"No configuration found for model type: {model_type}"
)

config_class = cls._configs[model_type]
return config_class(model)

@classmethod
def get_exporter(cls, format_name, config, **kwargs):
"""Get an exporter for the specified format.

Args:
format_name: The export format
config: The exporter configuration
**kwargs: Additional parameters for the exporter

Returns:
KerasHubExporter: An appropriate exporter instance

Raises:
ValueError: If no exporter is found for the format
"""
if format_name not in cls._exporters:
raise ValueError(f"No exporter found for format: {format_name}")

exporter_class = cls._exporters[format_name]
return exporter_class(config, **kwargs)

@classmethod
def _detect_model_type(cls, model):
"""Detect the model type from the model instance.

Args:
model: The Keras-Hub model

Returns:
str: The detected model type
"""
# Import here to avoid circular imports
try:
from keras_hub.src.models.causal_lm import CausalLM
from keras_hub.src.models.image_segmenter import ImageSegmenter
from keras_hub.src.models.object_detector import ObjectDetector
from keras_hub.src.models.seq_2_seq_lm import Seq2SeqLM
except ImportError:
CausalLM = None
Seq2SeqLM = None
ObjectDetector = None
ImageSegmenter = None

model_class_name = model.__class__.__name__

if CausalLM and isinstance(model, CausalLM):
return "causal_lm"
elif "TextClassifier" in model_class_name:
return "text_classifier"
elif Seq2SeqLM and isinstance(model, Seq2SeqLM):
return "seq2seq_lm"
elif "ImageClassifier" in model_class_name:
return "image_classifier"
elif ObjectDetector and isinstance(model, ObjectDetector):
return "object_detector"
elif "ObjectDetector" in model_class_name:
return "object_detector"
elif ImageSegmenter and isinstance(model, ImageSegmenter):
return "image_segmenter"
elif "ImageSegmenter" in model_class_name:
return "image_segmenter"
else:
# Default to text model for generic Keras-Hub models
return "text_model"
Loading
Loading