Skip to content

khigashi1987/Python_PCoA

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Python_PCoA

The Python implementation for Principal Coordinate Analysis. For distance metric, one of Jaccard, Bray-Curtis, or Jensen-Shannon divergence can be used.

usage: pcoa.py [-h] [-f DATA_FILE] [-d {Jaccard,BrayCurtis,JSD}] [-b]
              [-n N_ARROWS] [-g GROUP_FILE]

optional arguments:
  -h, --help            show this help message and exit
  -f DATA_FILE, --file DATA_FILE
                        tab-separated text file. rows are variables, columns
                        are samples.
  -d {Jaccard,BrayCurtis,JSD}, --distance_metric {Jaccard,BrayCurtis,JSD}
                        choose distance metric used for PCoA.
  -b, --biplot          output biplot (with calculating factor loadings).
  -n N_ARROWS, --number_of_arrows N_ARROWS
                        how many top-contributing arrows should be drawed.
  -g GROUP_FILE, --grouping_file GROUP_FILE
                        plot samples by same colors and markers when they
                        belong to the same group. Please indicate Tab-
                        separated 'Samples vs. Group file' ( first columns are
                        sample names, second columns are group names ).

About

The Python implementation for Principal Coordinate Analysis

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages