-
Notifications
You must be signed in to change notification settings - Fork 10
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Conflicts: include/GNGGraph.h include/SHGraphDefs.h scripts/GNGConvertToIGraph.r scripts/RcppInterface.r src/ExtGraphNodeManager.hpp src/RcppInterface.cpp tests/test_many_servers.r
- Loading branch information
Showing
130 changed files
with
6,468 additions
and
66,574 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,6 +1,7 @@ | ||
.depend/ | ||
build/ | ||
*.so | ||
*.o | ||
*.d | ||
*~ | ||
data/ | ||
data/ |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,15 @@ | ||
Package: GrowingNeuralGas | ||
Version: 0.1 | ||
Date: 2014-01-08 | ||
Title: Online, very fast big-data clustering algorithm Growing Neural Gas implementation | ||
for R written in C++. | ||
Author: Stanislaw Jastrzebski <[email protected]> | ||
Maintainer: Stanislaw Jastrzebski <[email protected]> | ||
Depends: Rcpp (>= 0.10.4), BH(>= 1.54.0) | ||
LinkingTo: BH, Rcpp | ||
Suggests: RUnit | ||
Description: Cluster big amounts of data using online lightspeed implementation of Growing Neural Gas. | ||
OS_type: unix | ||
License: LGPL-3 | ||
Packaged: 2014-01-08 22:39:25 UTC; staszek | ||
NeedsCompilation: yes |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,3 @@ | ||
import(igraph, methods) | ||
useDynLib(GrowingNeuralGas) | ||
exportPattern("^[[:alpha:]]+") |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,110 @@ | ||
.gng.box_point<-function(r, center, prob=-1){ | ||
point <- c() | ||
|
||
if(prob == -1) | ||
point<-center | ||
else | ||
point<-c(center, prob) | ||
|
||
point[1:3] = point[1:3] + runif(3, min=-r/2.0, max=r/2.0) | ||
|
||
point | ||
} | ||
|
||
|
||
.gng.plane_point<-function(r,center){ | ||
if(!hasArg(r)) r<-1.0 | ||
if(!hasArg(center)) center<-c(0,0,0) | ||
|
||
point<-center | ||
point[1]<-point[1]+r*runif(1.0) | ||
point[2]<-point[2]+r*runif(1.0) | ||
point[3]<-point[3] | ||
|
||
return(point) | ||
} | ||
|
||
.gng.sphere_point<-function(r,center){ | ||
if(!hasArg(r)) r<-1.0 | ||
if(!hasArg(center)) center<-c(0,0,0) | ||
|
||
alpha<-runif(1)*2*pi | ||
beta<-runif(1)*pi | ||
|
||
point<-center | ||
point[1]<-point[1]+r*cos(alpha)*sin(beta) | ||
point[2]<-point[2]+r*sin(alpha)*sin(beta) | ||
point[3]<-point[3]+r*cos(beta) | ||
|
||
return(point) | ||
} | ||
|
||
gng.preset.box<-function(N, r=0.5, center=c(0.5,0.5,0.5), prob=-1){ | ||
mat<-NULL | ||
|
||
|
||
if(prob == -1) | ||
mat<-matrix(0,N,3) | ||
else | ||
mat<-matrix(0,N,4) | ||
|
||
for(i in 1:N){ | ||
mat[i,] = .gng.box_point(r=r, center=center, prob=prob) | ||
} | ||
|
||
mat | ||
} | ||
|
||
|
||
|
||
gng.preset.plane<-function(N, side=0.5, center=c(0.5,0.5,0.5), prob=-1){ | ||
|
||
|
||
mat<-matrix(0,N,3) | ||
|
||
for(i in 1:N){ | ||
mat[i,1:3] = .gng.plane_point(side, center) | ||
mat[i,3] = mat[i,1] | ||
} | ||
|
||
mat | ||
} | ||
|
||
|
||
gng.preset.sphere<-function(N, r=0.5, center=c(0.5,0.5,0.5),prob=-1){ | ||
mat<-matrix(0,N,3) | ||
|
||
for(i in 1:N){ | ||
mat[i,1:3] = .gng.sphere_point(r, center) | ||
} | ||
|
||
mat | ||
} | ||
|
||
|
||
.sigmoid <- function(x){ | ||
1./(1.+exp(-x)) | ||
} | ||
|
||
gng.preset_potential<-function(N, r=0.5, center=c(0.5,0.5,0.5), prob=-1){ | ||
mat <- matrix(rnorm(20,mean=1), N,3) | ||
|
||
for(j in 1:N){ | ||
t<-rnorm(1,mean=0,sd=1) | ||
u<-rnorm(1,mean=0,sd=1) | ||
val<-.sigmoid(t^2+u^2); | ||
mat[j,1] = t | ||
mat[j,2] = u | ||
mat[j,3] = val | ||
|
||
} | ||
|
||
mat | ||
} | ||
|
||
|
||
|
||
|
||
|
||
|
||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,27 @@ | ||
|
||
.plane.point<-function(r,center){ | ||
if(!hasArg(r)) r<-1.0 | ||
if(!hasArg(center)) center<-c(0,0,0) | ||
|
||
point<-center | ||
point[1]<-point[1]+r*runif(1.0) | ||
point[2]<-point[2]+r*runif(1.0) | ||
point[3]<-point[3] | ||
|
||
return(point) | ||
} | ||
|
||
.sphere.point<-function(r,center){ | ||
if(!hasArg(r)) r<-1.0 | ||
if(!hasArg(center)) center<-c(0,0,0) | ||
|
||
alpha<-runif(1)*2*pi | ||
beta<-runif(1)*pi | ||
|
||
point<-center | ||
point[1]<-point[1]+r*cos(alpha)*sin(beta) | ||
point[2]<-point[2]+r*sin(alpha)*sin(beta) | ||
point[3]<-point[3]+r*cos(beta) | ||
|
||
return(point) | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,129 @@ | ||
library(igraph) | ||
|
||
|
||
|
||
if("rgl" %in% rownames(installed.packages()) == TRUE){ | ||
.gng.plot3d<-function(gngServer){ | ||
tmp_name <- paste("tmp",sample(1:1000, 1),".graphml", sep="") | ||
gngServer$export_to_graphml(tmp_name) | ||
print("Reading GraphML dumped") | ||
.visualizeIGraphRGL(.readFromGraphML(tmp_name)) | ||
file.remove(tmp_name) | ||
} | ||
#' Draw igraph using rgl - assumes >=3 dimensions and draws 3 first | ||
.visualizeIGraphRGL<-function(g, radius=NULL){ | ||
library(multicore) | ||
library(rgl) | ||
library(igraph) | ||
|
||
if(length(V(g))==0) return | ||
|
||
iteration<-0 | ||
nodes <- length(V(g)) | ||
|
||
# Init 3d data | ||
x_lines <- c(1:2*length(E(g))) | ||
y_lines <- c(1:2*length(E(g))) | ||
z_lines <- c(1:2*length(E(g))) | ||
k<-1 | ||
m<-1 | ||
x<-c(1:nodes) | ||
y<-c(1:nodes) | ||
z<-c(1:nodes) | ||
|
||
# Write 3d positions | ||
for(i in 1:nodes){ | ||
|
||
x[i]=V(g)[i]$v0 | ||
y[i]=V(g)[i]$v1 | ||
z[i]=V(g)[i]$v2 | ||
} | ||
|
||
# TODO: edges might be huge.. | ||
for(edg_idx in 1:length(E(g))) | ||
{ | ||
edg <- get.edges(g, E(g)[edg_idx]) | ||
x_lines[k] = V(g)[edg[1]]$v0 | ||
y_lines[k] = V(g)[edg[1]]$v1 | ||
z_lines[k] = V(g)[edg[1]]$v2 | ||
|
||
x_lines[k+1] = V(g)[edg[2]]$v0 | ||
y_lines[k+1] = V(g)[edg[2]]$v1 | ||
z_lines[k+1] = V(g)[edg[2]]$v2 | ||
k = k + 2 | ||
} | ||
|
||
if(is.null(radius)){ | ||
radius <- 8.0*(0.3333* (abs(max(x) - min(x))+abs(max(y) - min(y))+abs(max(z) - min(z)))/(nodes+0.0)) | ||
} | ||
|
||
cx <- V(g)$error | ||
cx <- abs(cx)/max(abs(cx)) | ||
cy <- c(1:(nodes)) | ||
cz <- c(1:(nodes)) | ||
|
||
cy <- 0.1 | ||
cz <- 0.1 | ||
print(cx) | ||
|
||
|
||
### Draw graph ### | ||
rgl.clear() | ||
rgl.light() | ||
rgl.bg(color="white") | ||
axes3d(edges="bbox") | ||
|
||
|
||
rgl.spheres(x,y,z, | ||
radius = rep(radius, length(cx)), | ||
col=rgb(cx,cy, cz)) | ||
|
||
rgl.lines(x_lines[1:k-1],y_lines[1:k-1],z_lines[1:k-1],color="bisque") | ||
} | ||
} | ||
.gng.plot2d.errors<-function(gngServer, cluster, layout_2d, start_s=2){ | ||
tmp_name <- paste("tmp",sample(1:1000, 1),".graphml", sep="") | ||
gngServer$export_to_graphml(tmp_name) | ||
.visualizeIGraph2dWithErrors(.readFromGraphML(tmp_name ), cluster, layout_2d, start_s) | ||
file.remove(tmp_name) | ||
} | ||
|
||
.gng.plot2d<-function(gngServer, cluster, layout_2d){ | ||
tmp_name <- paste("tmp",sample(1:1000, 1),".graphml", sep="") | ||
gngServer$export_to_graphml(tmp_name) | ||
.visualizeIGraph2d(.readFromGraphML(tmp_name ), cluster, layout_2d) | ||
file.remove(tmp_name) | ||
} | ||
#' Visualize igraph using igraph plot | ||
#' It will layout graph using v0 and v1 coordinates | ||
#' @note It is quite slow, works for graphs < 2000 nodes, and for graphs <400 when using layout | ||
.visualizeIGraph2d<-function(g, cluster, layout_2d){ | ||
#g<-as.undirected(g) | ||
L<-NULL | ||
|
||
if(layout_2d){ | ||
L<-cbind(V(g)$v0, V(g)$v1) | ||
}else{ | ||
L <- layout.auto(g) | ||
# L<-layout.fruchterman.reingold(g, niter=10000, area=4*vcount(g)^2) | ||
} | ||
|
||
if(cluster){ | ||
l = fastgreedy.community(g)#as.undirected(g)) | ||
col<-rainbow(length(l)) | ||
plot.igraph(g,vertex.size=3.0,vertex.label=NA,vertex.color=col[membership(l)],layout=L) | ||
}else{ | ||
plot.igraph(g,vertex.size=3.0,vertex.label=NA,layout=L) | ||
} | ||
} | ||
|
||
.visualizeIGraph2dWithErrors<-function(ig, cluster, layout_2d, start_s=2){ | ||
plot.new() | ||
par(mfrow=c(1,2)) | ||
.visualizeIGraph2d(ig, cluster, layout_2d) | ||
title("Graph visualization") | ||
errors_raw = gng$get_error_statistics() | ||
errors = log((errors_raw+1)/min(errors_raw+1))[start_s:length(errors_raw)] | ||
plot(errors, type="l", lty=2, lwd=2, xlab="Time [s]", ylab="Mean error (log)", frame.plot=F) | ||
title("Mean error (log)") | ||
} |
Oops, something went wrong.