Skip to content

lebowm/bedrock-agents-streamlit

 
 

Repository files navigation

Setup Amazon Bedrock agent, knowledge base, and action group with Streamlit

Table of Contents

  1. Introduction
  2. Prerequisites
  3. Diagram
  4. Configuration and Setup
  5. Step 5: Setup Knowledge Base with Bedrock Agent
  6. Step 6: Create an Alias
  7. Step 7: Testing the Setup
  8. Step 8: Setup and Run Streamlit App on EC2 (Optional)
  9. Cleanup
  10. Security
  11. License

Overview

In this project, we will set up an Amazon Bedrock agent with an action group that dynamically creates an investment company portfolio based on specific parameters. The agent also has Q&A capabilities for Federal Open Market Committee (FOMC) reports, leveraging a Streamlit framework for the user interface. Additionally, this exercise includes a method for sending emails, although the email functionality will not be fully configured.

For those who prefer an Infrastructure-as-Code (IaC) solution, we provide an AWS CloudFormation template that will deploy most of the necessary resources, including S3 buckets, an action group, and a Lambda function. You will still need to manually create the knowledge base with the already provided resources, but the steps are relatively straightforward. If you would like to deploy this workflow via AWS CloudFormation, please refer to the workshop guide here.

Alternatively, this README will walk you through the step-by-step process to set up the Amazon Bedrock agent manually using the AWS Console.

Prerequisites

  • An active AWS Account.
  • Familiarity with AWS services like Amazon Bedrock, S3, Lambda, and Cloud9.

Diagram

Diagram

Configuration and Setup

Step 1: Creating S3 Buckets

  • Please make sure that you are in the us-west-2 region. If another region is required, you will need to update the region variable theRegion in the invoke_agent.py file code.
  • Domain Data Bucket: Create an S3 bucket to store the domain data. For example, call the S3 bucket knowledgebase-bedrock-agent-{alias}. We will use the default settings.

Bucket create 1

Bucket create 2

  • Next, we will download the domain data from here. On your computer, open terminal or command prompt, and run the following curl commands to download the data:
  • For Mac

      curl https://raw.githubusercontent.com/build-on-aws/bedrock-agents-streamlit/main/S3docs/fomcminutes20230201.pdf --output ~/Documents/fomcminutes20230201.pdf
    
      curl https://raw.githubusercontent.com/build-on-aws/bedrock-agents-streamlit/main/S3docs/fomcminutes20230322.pdf --output ~/Documents/fomcminutes20230322.pdf
    
      curl https://raw.githubusercontent.com/build-on-aws/bedrock-agents-streamlit/main/S3docs/fomcminutes20230614.pdf --output ~/Documents/fomcminutes20230614.pdf
    
      curl https://raw.githubusercontent.com/build-on-aws/bedrock-agents-streamlit/main/S3docs/fomcminutes20230726.pdf --output ~/Documents/fomcminutes20230726.pdf
    
      curl https://raw.githubusercontent.com/build-on-aws/bedrock-agents-streamlit/main/S3docs/fomcminutes20230920.pdf --output ~/Documents/fomcminutes20230920.pdf
    
      curl https://raw.githubusercontent.com/build-on-aws/bedrock-agents-streamlit/main/S3docs/fomcminutes20231101.pdf --output ~/Documents/fomcminutes20231101.pdf
    
  • For Windows

    curl https://raw.githubusercontent.com/build-on-aws/bedrock-agents-streamlit/main/S3docs/fomcminutes20230201.pdf --output %USERPROFILE%\Documents\fomcminutes20230201.pdf

    curl https://raw.githubusercontent.com/build-on-aws/bedrock-agents-streamlit/main/S3docs/fomcminutes20230322.pdf --output %USERPROFILE%\Documents\fomcminutes20230322.pdf

    curl https://raw.githubusercontent.com/build-on-aws/bedrock-agents-streamlit/main/S3docs/fomcminutes20230614.pdf --output %USERPROFILE%\Documents\fomcminutes20230614.pdf

    curl https://raw.githubusercontent.com/build-on-aws/bedrock-agents-streamlit/main/S3docs/fomcminutes20230726.pdf --output %USERPROFILE%\Documents\fomcminutes20230726.pdf

    curl https://raw.githubusercontent.com/build-on-aws/bedrock-agents-streamlit/main/S3docs/fomcminutes20230920.pdf --output %USERPROFILE%\Documents\fomcminutes20230920.pdf

    curl https://raw.githubusercontent.com/build-on-aws/bedrock-agents-streamlit/main/S3docs/fomcminutes20231101.pdf --output %USERPROFILE%\Documents\fomcminutes20231101.pdf
  • Also, you have the option to download the .pdf files from here. These files will download to your Documents folder. Upload these files to S3 bucket knowledgebase-bedrock-agent-{alias}. These files are the Federal Open Market Committee documents describing monetary policy decisions made at the Federal Reserved board meetings. The documents include discussions of economic conditions, policy directives to the Federal Reserve Bank of New York for open market operations, and votes on the federal funds rate. More information can be found here. Once uploaded, please select one of the documents to open and review the content.

bucket domain data

Step 2: Knowledge Base Setup in Bedrock Agent

  • Before we setup the knowledge base, we will need to grant access to the models that will be needed for our Bedrock agent. Navigate to the Amazon Bedrock console, then on the left of the screen, scroll down and select Model access. On the right, select the orange Manage model access button.

Model access

  • Select the checkbox for the base model columns Amazon: Titan Embeddings G1 - Text and Anthropic: Claude 3 Haiku. This will provide you access to the required models. After, scroll down to the bottom right and select Request model access.

  • After, verify that the Access status of the Models are green with Access granted.

Access granted

  • Now, we will create a knowledge base by selecting Knowledge base on the left, then selecting the orange button Create knowledge base.

create_kb_btn

  • You can use the default name, or enter in your own. Then, select Next at the bottom right of the screen.

KB details

  • Sync S3 bucket knowledgebase-bedrock-agent-{alias} to this knowledge base.

KB setup

  • For the embedding model, choose Amazon: Titan Embeddings G1 - Text. Leave the other options as default, and scroll down to select Next.

Vector Store Config

  • On the next screen, review your work, then select Create knowledge base (Creating the knowledge base may take a few minutes. Please wait for it to finish before going to the next step.)

Review and Create KB

  • When the knowledge base is complete, you will see a green message at the top similar to the following:

kb complete

Step 3: Lambda Function Configuration

  • Create a Lambda function (Python 3.12) for the Bedrock agent's action group. We will call this Lambda function Legalese-actions.

Create Function

Create Function2

  • Copy the python code provided below, or from the file here into your Lambda function.
import json

def lambda_handler(event, context):
    print(event)

    # Mock data for demonstration purposes
    company_data = [
        #Technology Industry
        {"companyId": 1, "companyName": "TechStashNova Inc.", "industrySector": "Technology", "revenue": 10000, "expenses": 3000, "profit": 7000, "employees": 10},
        {"companyId": 2, "companyName": "QuantumPirateLeap Technologies", "industrySector": "Technology", "revenue": 20000, "expenses": 4000, "profit": 16000, "employees": 10},
        {"companyId": 3, "companyName": "CyberCipherSecure IT", "industrySector": "Technology", "revenue": 30000, "expenses": 5000, "profit": 25000, "employees": 10},
        {"companyId": 4, "companyName": "DigitalMyricalDreams Gaming", "industrySector": "Technology", "revenue": 40000, "expenses": 6000, "profit": 34000, "employees": 10},
        {"companyId": 5, "companyName": "NanoMedNoLand Pharmaceuticals", "industrySector": "Technology", "revenue": 50000, "expenses": 7000, "profit": 43000, "employees": 10},
        {"companyId": 6, "companyName": "RoboSuperBombTech Industries", "industrySector": "Technology", "revenue": 60000, "expenses": 8000, "profit": 52000, "employees": 12},
        {"companyId": 7, "companyName": "FuturePastNet Solutions", "industrySector": "Technology",  "revenue": 60000, "expenses": 9000, "profit": 51000, "employees": 10},
        {"companyId": 8, "companyName": "InnovativeCreativeAI Corp", "industrySector": "Technology", "revenue": 65000, "expenses": 10000, "profit": 55000, "employees": 15},
        {"companyId": 9, "companyName": "EcoLeekoTech Energy", "industrySector": "Technology", "revenue": 70000, "expenses": 11000, "profit": 59000, "employees": 10},
        {"companyId": 10, "companyName": "TechyWealthHealth Systems", "industrySector": "Technology", "revenue": 80000, "expenses": 12000, "profit": 68000, "employees": 10},

        #Real Estate Industry
        {"companyId": 11, "companyName": "LuxuryToNiceLiving Real Estate", "industrySector": "Real Estate", "revenue": 90000, "expenses": 13000, "profit": 77000, "employees": 10},
        {"companyId": 12, "companyName": "UrbanTurbanDevelopers Inc.", "industrySector": "Real Estate", "revenue": 100000, "expenses": 14000, "profit": 86000, "employees": 10},
        {"companyId": 13, "companyName": "SkyLowHigh Towers", "industrySector": "Real Estate", "revenue": 110000, "expenses": 15000, "profit": 95000, "employees": 18},
        {"companyId": 14, "companyName": "GreenBrownSpace Properties", "industrySector": "Real Estate", "revenue": 120000, "expenses": 16000, "profit": 104000, "employees": 10},
        {"companyId": 15, "companyName": "ModernFutureHomes Ltd.", "industrySector": "Real Estate", "revenue": 130000, "expenses": 17000, "profit": 113000, "employees": 10},
        {"companyId": 16, "companyName": "CityCountycape Estates", "industrySector": "Real Estate", "revenue": 140000, "expenses": 18000, "profit": 122000, "employees": 10},
        {"companyId": 17, "companyName": "CoastalFocalRealty Group", "industrySector": "Real Estate", "revenue": 150000, "expenses": 19000, "profit": 131000, "employees": 10},
        {"companyId": 18, "companyName": "InnovativeModernLiving Spaces", "industrySector": "Real Estate", "revenue": 160000, "expenses": 20000, "profit": 140000, "employees": 10},
        {"companyId": 19, "companyName": "GlobalRegional Properties Alliance", "industrySector": "Real Estate", "revenue": 170000, "expenses": 21000, "profit": 149000, "employees": 11},
        {"companyId": 20, "companyName": "NextGenPast Residences", "industrySector": "Real Estate", "revenue": 180000, "expenses": 22000, "profit": 158000, "employees": 260}
    ]


    def get_named_parameter(event, name):
        return next(item for item in event['parameters'] if item['name'] == name)['value']


    def companyResearch(event):
        companyName = get_named_parameter(event, 'name').lower()
        print("NAME PRINTED: ", companyName)

        for company_info in company_data:
            if company_info["companyName"].lower() == companyName:
                return company_info
        return None

    def createPortfolio(event, company_data):
        numCompanies = int(get_named_parameter(event, 'numCompanies'))
        industry = get_named_parameter(event, 'industry').lower()

        industry_filtered_companies = [company for company in company_data
                                       if company['industrySector'].lower() == industry]

        sorted_companies = sorted(industry_filtered_companies, key=lambda x: x['profit'], reverse=True)

        top_companies = sorted_companies[:numCompanies]
        return top_companies


    def sendEmail(event, company_data):
        emailAddress = get_named_parameter(event, 'emailAddress')
        fomcSummary = get_named_parameter(event, 'fomcSummary')

        # Retrieve the portfolio data as a string
        portfolioDataString = get_named_parameter(event, 'portfolio')


        # Prepare the email content
        email_subject = "Portfolio Creation Summary and FOMC Search Results"
        #email_body = f"FOMC Search Summary:\n{fomcSummary}\n\nPortfolio Details:\n{json.dumps(portfolioData, indent=4)}"

        # Email sending code here (commented out for now)

        return "Email sent successfully to {}".format(emailAddress)


    result = ''
    response_code = 200
    action_group = event['actionGroup']
    api_path = event['apiPath']

    print("api_path: ", api_path )

    if api_path == '/companyResearch':
        result = companyResearch(event)
    elif api_path == '/createPortfolio':
        result = createPortfolio(event, company_data)
    elif api_path == '/sendEmail':
        result = sendEmail(event, company_data)
    else:
        response_code = 404
        result = f"Unrecognized api path: {action_group}::{api_path}"

    response_body = {
        'application/json': {
            'body': result
        }
    }

    action_response = {
        'actionGroup': event['actionGroup'],
        'apiPath': event['apiPath'],
        'httpMethod': event['httpMethod'],
        'httpStatusCode': response_code,
        'responseBody': response_body
    }

    api_response = {'messageVersion': '1.0', 'response': action_response}
    return api_response
  • Then, select Deploy in the tab section of the Lambda console. Review the code provided before moving to the next step. You will see that we are using mock data to represent various companies in the technology and real estate insdustry, along with functions that we will call later in this workshop.

Lambda deploy

  • Next, apply a resource policy to the Lambda to grant Bedrock agent access. To do this, we will switch the top tab from code to configuration and the side tab to Permissions. Then, scroll to the Resource-based policy statements section and click the Add permissions button.

Permissions config

Lambda resource policy create

  • Select AWS service, then use the following settings to configure the resource based policy:
  • Service - Other
  • Statement ID - allow-bedrock-agent
  • Principal - bedrock.amazonaws.com
  • Source ARN - arn:aws:bedrock:us-west-2:{account-id}:agent/* - (Please note, AWS recommends least privilage so only an allowed agent can invoke this Lambda function. A * at the end of the ARN grants any agent in the account access to invoke this Lambda. Ideally, we would not use this in a production environment.)
  • Action - lambda:InvokeFunction

Lambda resource policy

  • Once your configurations look similar to the above screenshot, select Save at the bottom.

  • Next, we will adjust the configuration on the Lambda so that it has enough time, and CPU to handle the request. Navigate back to the Lambda function screen, go to the Configurations tab, then General configuration and select Edit.

Lambda config 1

  • Update Memory to 1024MB, and Timeout to 1 minute. Leave the other settings as default, then select Save.

Lambda config 2

Step 4: Setup Bedrock Agent and Action Group

  • Navigate to the Bedrock console. Go to the toggle on the left, and under Builder tools select Agents. Provide an agent name, like Legalese then create the agent.

  • The agent description is optional, and we will use the default new service role. For the model, select Anthropic: Claude 3 Haiku. Next, provide the following instruction for the agent:

You are a paralegal. Your job is to assist in case reviews, create research summaries, generate reports and other documents, and facilitate communication through emails. Here is how I want you to think step by step:

1. Report Creation:
Analyze the user’s request, and generate a list of arguments both for and against the issue. Based on the criteria from the request, create a report of the arguments. Use the template provided to format the report.

2. Document Summarization:
    For each file provided, conduct detailed research to gather relevant data. When a document, like the NY city charter, is mentioned, retrieve the document and provide a concise summary.

3. Email Communication:
    Using the email template provided, format an email that includes the newly created report and any summaries of important documents. Utilize the provided tools to send an email upon request, That includes a summary of provided responses and portfolios created.

  • After, scroll to the top and Save

  • The instructions for the Generative AI Investment Analyst Tool outlines a comprehensive framework designed to assist in investment analysis. This tool is tasked with creating tailored portfolios of companies based on specific industry criteria, conducting thorough research on these companies, and summarizing relevant financial documents. Additionally, the tool formats and sends professional emails containing the portfolios and document summaries. The process involves continuous adaptation to user feedback and maintaining a contextual understanding of ongoing requests to ensure accurate and efficient responses.

  • Next, we will add an action group. Scroll down to Action groups then select Add.

  • Call the action group Legalese-actions. We will set the Action group type to Define with API schemas. Action group invocations should be set to select an existing Lambda function. For the Lambda function, select Legalese-actions.

  • For the Action group Schema, we will choose Define via in-line schema editor. Replace the default schema in the In-line OpenAPI schema editor with the schema provided below. You can also retrieve the schema from the repo here. After, select Add. (This API schema is needed so that the bedrock agent knows the format structure and parameters needed for the action group to interact with the Lambda function.)

{
  "openapi": "3.0.1",
  "info": {
    "title": "LegaleseAssistant API",
    "description": "API for creating a company portfolio, search company data, and send summarized emails",
    "version": "1.0.0"
  },
  "paths": {
    "/companyResearch": {
      "post": {
        "description": "Get financial data for a company by name",
        "parameters": [
          {
            "name": "name",
            "in": "query",
            "description": "Name of the company to research",
            "required": true,
            "schema": {
              "type": "string"
            }
          }
        ],
        "responses": {
          "200": {
            "description": "Successful response with company data",
            "content": {
              "application/json": {
                "schema": {
                  "$ref": "#/components/schemas/CompanyData"
                }
              }
            }
          }
        }
      }
    },
    "/createPortfolio": {
      "post": {
        "description": "Create a company portfolio of top profit earners by specifying number of companies and industry",
        "parameters": [
          {
            "name": "numCompanies",
            "in": "query",
            "description": "Number of companies to include in the portfolio",
            "required": true,
            "schema": {
              "type": "integer",
              "format": "int32"
            }
          },
          {
            "name": "industry",
            "in": "query",
            "description": "Industry sector for the portfolio companies",
            "required": true,
            "schema": {
              "type": "string"
            }
          }
        ],
        "responses": {
          "200": {
            "description": "Successful response with generated portfolio",
            "content": {
              "application/json": {
                "schema": {
                  "$ref": "#/components/schemas/Portfolio"
                }
              }
            }
          }
        }
      }
    },
    "/sendEmail": {
      "post": {
        "description": "Send an email with FOMC search summary and created portfolio",
        "parameters": [
          {
            "name": "emailAddress",
            "in": "query",
            "description": "Recipient's email address",
            "required": true,
            "schema": {
              "type": "string",
              "format": "email"
            }
          },
          {
            "name": "fomcSummary",
            "in": "query",
            "description": "Summary of FOMC search results",
            "required": true,
            "schema": {
              "type": "string"
            }
          },
          {
            "name": "portfolio",
            "in": "query",
            "description": "Details of the created stock portfolio",
            "required": true,
            "schema": {
              "$ref": "#/components/schemas/Portfolio"
            }
          }
        ],
        "responses": {
          "200": {
            "description": "Email sent successfully",
            "content": {
              "text/plain": {
                "schema": {
                  "type": "string",
                  "description": "Confirmation message"
                }
              }
            }
          }
        }
      }
    }
  },
  "components": {
    "schemas": {
      "CompanyData": {
        "type": "object",
        "description": "Financial data for a single company",
        "properties": {
          "name": {
            "type": "string",
            "description": "Company name"
          },
          "expenses": {
            "type": "string",
            "description": "Annual expenses"
          },
          "revenue": {
            "type": "number",
            "description": "Annual revenue"
          },
          "profit": {
            "type": "number",
            "description": "Annual profit"
          }
        }
      },
      "Portfolio": {
        "type": "object",
        "description": "Stock portfolio with specified number of companies",
        "properties": {
          "companies": {
            "type": "array",
            "items": {
              "$ref": "#/components/schemas/CompanyData"
            },
            "description": "List of companies in the portfolio"
          }
        }
      }
    }
  }
}

ag creation

  • This API schema defines three primary endpoints, /companyResearch, /createPortfolio, and /sendEmail detailing how to interact with the API, the required parameters, and the expected responses. advance_prompt_btn

  • Now, we need to provide the Bedrock agent a prompt that are examples of a formatted response for an investment company portfolio, and email. In the creation of an agent, it's initially configured with four foundational prompt templates for pre-processing, orchestration, knowledge base response generation, and post-processing. These prompts guide how the agent interacts with the foundation model across various steps of the process. These templates are crucial for processing user inputs, orchestrating the flow between the foundation model, action groups, and knowledge bases, as well as formatting the responses sent to users. By customizing these templates and incorporating advanced prompts or few-shot examples, you can significantly improve the agent's precision and performance in handling specific tasks. More information on advanced prompting for an agent can be found here. Additionally, there is an option to use a custom parser Lambda function for more granular formatting.

  • Next, scroll down to Advanced prompts and select Edit.

advance_prompt_btn

  • Select the Builder tools tab. Toggle on the radio button Override orchestration template defaults. Make sure Activate orchestration template is enabled as well.

  • In the Prompt template editor, scroll down to line 22-23, then copy/paste in the following portfolio example and email format:

Here is an example of a company portfolio.

<portfolio_example>

Here is a portfolio of the top 3 real estate companies:

  1. NextGenPast Residences with revenue of $180,000, expenses of $22,000 and profit of $158,000 employing 260 people.

  2. GlobalRegional Properties Alliance with revenue of $170,000, expenses of $21,000 and profit of $149,000 employing 11 people.

  3. InnovativeModernLiving Spaces with revenue of $160,000, expenses of $20,000 and profit of $140,000 employing 10 people.

</portfolio_example>

Here is an example of an email formatted.

<email_format>

Company Portfolio:

  1. NextGenPast Residences with revenue of $180,000, expenses of $22,000 and profit of $158,000 employing 260 people.

  2. GlobalRegional Properties Alliance with revenue of $170,000, expenses of $21,000 and profit of $149,000 employing 11 people.

  3. InnovativeModernLiving Spaces with revenue of $160,000, expenses of $20,000 and profit of $140,000 employing 10 people.


FOMC Report:

  Participants noted that recent indicators pointed to modest growth in spending and production. Nonetheless, job gains had been robust in recent months, and the unemployment rate remained low. Inflation had eased somewhat but remained elevated.

  Participants recognized that Russia’s war against Ukraine was causing tremendous human and economic hardship and was contributing to elevated global uncertainty. Against this background, participants continued to be highly attentive to inflation risks.
</email_format>
  • The results should look similar to the following:

advance_prompt_setup

  • Scroll to the bottom and select the Save and exit button.

  • Now, check to confirm that the Orchestration in the Advance prompt section is Overridden.

advance_prompt_overridden

Step 5: Setup Knowledge Base with Bedrock Agent

  • While on the Bedrock agent console, scroll down to Knowledge base and select Add. When integrating the KB with the agent, you will need to provide basic instructions on how to handle the knowledge base. For example, use the following:

    Use this knowledge base when a user asks about data, such as economic trends, company financial statements, or the outcomes of the Federal Open Market Committee meetings.
    

Knowledge base add2

  • Review your input, then select Add.

  • Scroll to the top and select Prepare so that the changes made are updated. Then select Save and exit.

Step 6: Create an alias

  • Create an alias (new version), and choose a name of your liking. After it's done, make sure to copy your Alias ID and Agent ID. You will need this in step 8.

Create alias

Step 7: Testing the Setup

Testing the Knowledge Base

  • While in the Bedrock console, select Knowledge base under the Builder tools tab, then the KB you created. Scroll down to the Data source section, and make sure to select the Sync button.

KB sync

  • You will see a user interface on the right where you will need to select a model. Choose the Anthropic Claude 3 Haiku model, then select Apply.

Select model test

  • You should now have the ability to enter prompts in the user interface provided.

KB prompt

  • Test Prompts:
    Give me a summary of financial market developments and open market operations in January 2023.
    
    Can you provide information about inflation or rising prices?
    
    What can you tell me about the Staff Review of the Economic & Financial Situation?
    

Testing the Bedrock Agent

  • While in the Bedrock console, select Agents under the Builder tools tab, then the agent you created. You should be able to enter prompts in the user interface provided to test your knowledge base and action groups from the agent.

Agent test

  • Example prompts for Knowledge base:

    Give me a summary of financial market developments and open market operations in January 2023
    
    Tell me the participants view on economic conditions and economic outlook
    
    Provide any important information I should know about inflation, or rising prices
    
    Tell me about the Staff Review of the Economic & financial Situation
    
  • Example prompts for Action groups:

  Create a portfolio with 3 companies in the real estate industry
  Create portfolio of 3 companies that are in the technology industry
  Create a new investment portfolio of companies
  Do company research on TechStashNova Inc.
  • Example prompt for KB & AG
    Send an email to [email protected] that includes the company portfolio and FOMC summary
    
    (The logic for this method is not implemented to send emails)

Step 8: Setup and Run Streamlit App on EC2 (Optional)

  1. Obtain CF template to launch the streamlit app: Download the Cloudformation template from here. This template will be used to deploy an EC2 instance that has the Streamlit code to run the UI. Please note, the CIDR range and VPC used in the CloudFormation template may need to be modified if the defined subnet and VPC are not applicable.

  2. Deploy template via Cloudformation:

    • In your mangement console, search, then go to the CloudFormation service.
    • Create a stack with new resources (standard)

    Create stack

    • Prepare template: Choose existing template -> Specify template: Upload a template file -> upload the template donaloaded from the previous step.

Create stack config

  • Next, Provide a stack name like ec2-streamlit. Keep the instance type on the default of t3.small, then go to Next.

Stack details

  • On the Configure stack options screen, leave every setting as default, then go to Next.

  • Scroll down to the capabilities section, and acknowledge the warning message before submitting.

  • Once the stack is complete, go to the next step.

Stack complete

  1. Edit the app to update agent IDs:

    • Navigate to the EC2 instance management console. Under instances, you should see EC2-Streamlit-App. Select the checkbox next to it, then connect to it via EC2 Instance Connect.

    ec2 connect clip

  • If you see a message that says EC2 Instance Connect service IP addresses are not authorized, then you will need to re-deploy the template and select the correct CIDR range for the EC2 based on the region you are in. This will allow you to cannect to the EC2 instance via SSH. By default, it is the allowed CIDR range for us-west-2 region. However, if you are in the us-east-1 region for example, the CIDR range will need to be 18.206.107.24/29 when deploying the AWS Cloudformation template. Additional CIDR ranges for each region can be found here.

ec2 ssh error

  • Next, use the following command to edit the invoke_agent.py file:

    sudo vi app/streamlit_app/invoke_agent.py
  • Press i to go into edit mode. Then, update the AGENT ID and Agent ALIAS ID values.

file_edit

  • After, hit Esc, then save the file changes with the following command:

    :wq!
  • Now, start the streamlit app by running the following command:

    streamlit run app/streamlit_app/app.py
  • You should see an external URL. Copy & paste the URL into a web browser to start the streamlit application.

External IP

  • Once the app is running, please test some of the sample prompts provided. (On 1st try, if you receive an error, try again.)

Running App

  • Optionally, you can review the trace events in the left toggle of the screen. This data will include the Preprocessing, Orchestration, and PostProcessing traces.

Trace events

Cleanup

After completing the setup and testing of the Bedrock Agent and Streamlit app, follow these steps to clean up your AWS environment and avoid unnecessary charges:

  1. Delete S3 Buckets:
  • Navigate to the S3 console.
  • Select the buckets "knowledgebase-bedrock-agent-{alias}" and "artifacts-bedrock-agent-creator-{alias}". Make sure that both of these buckets are empty by deleting the files.
  • Choose 'Delete' and confirm by entering the bucket name.
  1. Remove Lambda Function:
  • Go to the Lambda console.
  • Select the "Legalese-actions" function.
  • Click 'Delete' and confirm the action.
  1. Delete Bedrock Agent:
  • In the Bedrock console, navigate to 'Agents'.
  • Select the created agent, then choose 'Delete'.
  1. Deregister Knowledge Base in Bedrock:
  • Access the Bedrock console, then navigate to “Knowledge base” under the Builder tools tab.
  • Select, then delete the created knowledge base.
  1. Clean Up EC2 Environment:
  • Navigate to the EC2 management console.
  • Select the EC2 instance you created, then delete.

Security

See CONTRIBUTING for more information.

License

This library is licensed under the MIT-0 License. See the LICENSE file.

About

Creating Amazon Bedrock agents with Streamlit Framework

Resources

License

Code of conduct

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%