This codebase contains code for the paper "JEDE: Universal Jersey Number Detector for Sports" published on IEEE TCSVT, 2022.
Tested on PyTorch 1.8.1.
conda install pytorch==1.8.0 torchvision==0.9.0 torchaudio==0.8.0 cudatoolkit=10.2 -c pytorch
pip install opencv-python
pip install pyclipper shapely
git clone https://github.com/liuhengyue/pgrcnn.git
cd pgrcnn
git submodule init
git submodule update
python -m pip install -e detectron2
See installation instructions for more details on installing detectron2.
The weights trained with all images across soccer and basketball videos can be found in the release.
Currently, the dataset is not released due to policies. But, it will be released in the future.
mkdir datasets/jnw
ln -s datasets/jnw detectron2/datasets/jnw
wget http://images.cocodataset.org/zips/train2017.zip
wget http://images.cocodataset.org/zips/val2017.zip
wget http://images.cocodataset.org/annotations/annotations_trainval2017.zip
mkdir datasets/coco
unzip train2017.zip -d datasets/coco
unzip val2017.zip -d datasets/coco
unzip annotations_trainval2017.zip -d datasets/coco
rm train2017.zip val2017.zip annotations_trainval2017.zip
wget http://ufldl.stanford.edu/housenumbers/train.tar.gz
mkdir svhn
tar -xvzf train.tar.gz -C svhn
rm train.tar.gz
If you find our work helpful, please cite:
@article{liu2022jede,
title={JEDE: Universal Jersey Number Detector for Sports},
author={Liu, Hengyue and Bhanu, Bir},
journal={IEEE Transactions on Circuits and Systems for Video Technology},
volume={32},
number={11},
pages={7894--7909},
year={2022},
publisher={IEEE}
}