8th Solution of SIIM-FISABIO-RSNA COVID19 Detection Competition
Anaconda virtual env is recommended. Python version is 3.7.
pip install -r requirements.txt
pip install kaggle # Kaggle API
vi ~/.kaggle/kaggle.json # Kaggle Profile - Account Tab - API - Create New API Token ex) {"usernames":"jihunlorenzopark", "key": "xxxxx"}
mkdir data-640 # Naming format is data-{image_size}
cd data-640
kaggle datasets download -d jihunlorenzopark/siim-fisabio-rsna-data-640 # Generated from the code here https://www.kaggle.com/c/siim-covid19-detection/discussion/239918
unzip siim-fisabio-rsna-data-640.zip
# For NIH CHEST X-ray dataset pretraining, run the below
mkdir data-nih
cd data-nih
kaggle datasets download -d jihunlorenzopark/nih640
unzip nih640.zip
Training script is run.py
configured by config.yaml
. Also, there are some model specific parameters in unet_smp.yaml
.
Before running the script, update root
parameter in config.yaml
to your cloned directory.
Also, unless you use wandb for logging training metrics/losses, turn off logger
option to use default build-in logger of pytorch. i.e. logger=False
# Please refer commands in this experiment.bash file.
bash experiment.bash