Skip to content

Commit

Permalink
seeds-reproducibility RWR
Browse files Browse the repository at this point in the history
  • Loading branch information
marinaEM committed Feb 23, 2024
1 parent afef894 commit c9db82f
Show file tree
Hide file tree
Showing 9 changed files with 38 additions and 10 deletions.
22 changes: 12 additions & 10 deletions examples/DTSEA_comparison/DTSEA_test.R
Original file line number Diff line number Diff line change
Expand Up @@ -14,7 +14,7 @@ if (!require(pacman, quietly = TRUE)){


library(pacman)
p_load(magrittr, dplyr, BiocManager, devtools, here, ggplot2)
p_load(magrittr, dplyr, BiocManager, devtools, here, ggplot2, tibble)


# Install the required packages for DTSEA and DisGeNet
Expand Down Expand Up @@ -51,29 +51,31 @@ colnames(drug_targets)<- gsub("drugbank_id", "drug_id", colnames(drug_targets))
##############
# Perform a simple DTSEA analysis using default optional parameters then sort
# the result dataframe by normalized enrichment scores (NES)
set.seed(234)
result_FA <- DTSEA(network = graph,
disease = FA_signature$Gene,
drugs = drug_targets, verbose = FALSE) %>% arrange(desc(NES))

relevantFA_results <- select(result_FA, -leadingEdge) %>% arrange(desc(NES)) %>% filter(NES > 0 & padj < .01)
NES_FAdrug_targets <- relevantFA_results[,c(1,2,6)] %>% add_column(target = drug_targets$gene_target[match(relevantFA_results$drug_id, drug_targets$drug_id)]) %>%
NES_FAdrug_targets <- relevantFA_results[,c(1,3,6)] %>% add_column(target = drug_targets$gene_target[match(relevantFA_results$drug_id, drug_targets$drug_id)]) %>%
add_column(drug = drug_targets$drug_name[match(relevantFA_results$drug_id, drug_targets$drug_id)])
length(unique(NES_FAdrug_targets$target)) ## 54 unique targets
length(unique(NES_FAdrug_targets$target)) ## 52 unique targets


############
## DTSEA: FM use-case
##############
# Perform a simple DTSEA analysis using default optional parameters then sort
# the result dataframe by normalized enrichment scores (NES)
set.seed(234)
result_FM <- DTSEA(network = graph,
disease = FM_signature$symbol,
drugs = drug_targets, verbose = FALSE) %>% arrange(desc(NES))

relevantFM_results <- select(result_FM, -leadingEdge) %>% arrange(desc(NES)) %>% filter(NES > 0 & padj < .01)
NES_FMdrug_targets <- relevantFM_results[,c(1,2,6)] %>% add_column(target = drug_targets$gene_target[match(relevantFM_results$drug_id, drug_targets$drug_id)]) %>%
NES_FMdrug_targets <- relevantFM_results[,c(1,3,6)] %>% add_column(target = drug_targets$gene_target[match(relevantFM_results$drug_id, drug_targets$drug_id)]) %>%
add_column(drug = drug_targets$drug_name[match(relevantFM_results$drug_id, drug_targets$drug_id)])
length(unique(NES_FMdrug_targets$target)) ## 85 unique targets
length(unique(NES_FMdrug_targets$target)) ## 91 unique targets


###############################
Expand All @@ -87,12 +89,12 @@ length(unique(NES_FMdrug_targets$target)) ## 85 unique targets
### 1. Load relevant filtered drexml results
FA_drexml<- read.delim(gzfile(here("examples", "fanconi_anemia" , "results","shap_filtered_stability_symbol.tsv.gz"))) %>% column_to_rownames("circuit_name")

overlapFA <- colnames(FA_drexml)[colnames(FA_drexml) %in% NES_FAdrug_targets$target] ## 7 overlap
overlapFA <- colnames(FA_drexml)[colnames(FA_drexml) %in% NES_FAdrug_targets$target] ## 6 overlap

### 2. Rank targets in NES_FAdrug_targets based on p-value
nes_fa_ranks <- NES_FAdrug_targets %>%
mutate(rank_nes_fa = row_number()) %>%
select(drug_id, drug ,target, pval, NES, rank_nes_fa) %>%
select(drug_id, drug ,target, padj, NES, rank_nes_fa) %>%
filter(target %in% overlapFA)

### 3. Calculate mean absolute SHAP values and count relevant circuits for all targets
Expand All @@ -109,7 +111,7 @@ FA_stats_df <- as.data.frame(t(FA_stats), stringsAsFactors = FALSE) %>%

### 4. Create summarisation table

summary_DTSEAcomparisonFA <- merge(nes_fa_ranks, FA_stats_df, by = "target", all.x = TRUE) %>% .[order(.$pval,decreasing = F),]
summary_DTSEAcomparisonFA <- merge(nes_fa_ranks, FA_stats_df, by = "target", all.x = TRUE) %>% .[order(.$padj,decreasing = F),]
write.table( summary_DTSEAcomparisonFA, here("examples", "DTSEA_comparison" ,"summary_DTSEAcomparisonFA.tsv"), sep="\t", quote = F, row.names = F, col.names = T)

### 5. Compare with cmap results
Expand All @@ -130,7 +132,7 @@ overlapFM <- colnames(FM_drexml)[colnames(FM_drexml) %in% NES_FMdrug_targets$tar
### 2. Rank targets in NES_FAdrug_targets based on p-value
nes_fm_ranks <- NES_FMdrug_targets %>%
mutate(rank_nes_fm = row_number()) %>%
select(drug_id, drug ,target, pval, NES, rank_nes_fm) %>%
select(drug_id, drug ,target, padj, NES, rank_nes_fm) %>%
filter(target %in% overlapFM)

### 3. Calculate mean absolute SHAP values and count relevant circuits for all targets
Expand All @@ -147,7 +149,7 @@ FM_stats_df <- as.data.frame(t(FM_stats), stringsAsFactors = FALSE) %>%

### 4. Create summarisation table

summary_DTSEAcomparisonFM <- merge(nes_fm_ranks, FM_stats_df, by = "target", all.x = TRUE) %>% .[order(.$pval,decreasing = F),]
summary_DTSEAcomparisonFM <- merge(nes_fm_ranks, FM_stats_df, by = "target", all.x = TRUE) %>% .[order(.$padj,decreasing = F),]
write.table( summary_DTSEAcomparisonFM, here("examples", "DTSEA_comparison" ,"summary_DTSEAcomparisonFM.tsv"), sep="\t" ,quote = F, row.names = F, col.names = T)

### 5. Compare with cmap results
Expand Down
Binary file not shown.
Binary file modified examples/DTSEA_comparison/summary_DTSEAcomparisonFA.zip
Binary file not shown.
Original file line number Diff line number Diff line change
@@ -0,0 +1,9 @@
target drug_id drug padj NES rank_nes_overall mean_abs_shap circuits_above_zero
PIK3CD DB11891 Fimepinostat 5.86409023807469E-05 2.35164642871307 17 0.256086674697682 88
EGFR DB12174 CUDC-101 0.000107047195274 2.30956196828472 18 0.00192081948265 4
VEGFA DB10772 Foreskin keratinocyte (neonatal) 0.000605901166843 2.25022081918057 22 0.00120908257817 1
TNF DB05992 Plinabulin 0.001806398537351 2.17902906869224 34 0.92890530672613 117
EGFR DB03496 Alvocidib 0.001922283066699 2.1385974800089 43 0.00192081948265 4
LPL DB13751 Glycyrrhizic acid 0.002994358115833 1.98861632676143 80 0.119130985152545 41
TUBB3 DB04845 Ixabepilone 0.003973089808473 2.12724378082689 46 0.059374744208029 19
VEGFA DB05294 Vandetanib 0.006768006463629 2.06043311812418 65 0.00120908257817 1
Binary file modified examples/DTSEA_comparison/summary_DTSEAcomparisonFA_curated.zip
Binary file not shown.
Binary file modified examples/DTSEA_comparison/summary_DTSEAcomparisonFM.zip
Binary file not shown.
17 changes: 17 additions & 0 deletions examples/DTSEA_comparison/summary_DTSEAcomparisonFM_curated.csv
Original file line number Diff line number Diff line change
@@ -0,0 +1,17 @@
target drug_id drug padj NES rank_nes_overall mean_abs_shap circuits_above_zero
LDHB DB11638 Artenimol 1.98408865659993E-07 2.40200990483904 28 0.053377641079268 5
RRM1 DB00631 Clofarabine 2.69329582279362E-07 2.49684342163065 20 0.006174314357354 1
EGFR DB03496 Alvocidib 7.07938283343453E-07 2.41138188947284 26 0.169799002032272 14
PSMB2 DB11762 Marizomib 1.60770306008383E-06 2.49958816383425 19 0.005816669406011 1
PDGFRB DB09283 Trapidil 3.65221302466481E-06 2.41975957955149 24 0.023702379013807 3
AR DB00421 Spironolactone 0.000103160770396 2.25020912161814 66 0.005380756008407 1
EGFR DB12174 CUDC-101 0.000123161358813 2.20658887402019 72 0.169799002032272 14
KDR DB05608 MKC-1 0.00102343053143 2.1573956192271 80 0.00652201980873 1
PDGFRB DB12147 Erdafitinib 0.001183330282605 2.09775818402175 94 0.023702379013807 3
CACNA2D1 DB00230 Pregabalin 0.001229636512096 2.09132430764859 97 0.100578160553848 9
CACNA2D1 DB08872 Gabapentin enacarbil 0.001229636512096 2.09132430764859 98 0.100578160553848 9
AR DB08804 Nandrolone decanoate 0.00195639906786 2.08835351757494 104 0.005380756008407 1
PDGFRB DB11694 Ilorasertib 0.003464725355424 2.00282691528826 135 0.023702379013807 3
AR DB00717 Norethisterone 0.007142878402106 1.66398775624387 238 0.005380756008407 1
AR DB08867 Ulipristal 0.007142878402106 1.66398775624387 239 0.005380756008407 1
AR DB14583 Segesterone acetate 0.007142878402106 1.66398775624387 240 0.005380756008407 1
Binary file modified examples/DTSEA_comparison/summary_DTSEAcomparisonFM_curated.zip
Binary file not shown.
Binary file removed summary_DTSEAcomparisonFA.gz
Binary file not shown.

0 comments on commit c9db82f

Please sign in to comment.