-
Notifications
You must be signed in to change notification settings - Fork 74
Test hypothesis: scaling batch size widens the gap between Muon & AdamW #1558
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Changes from all commits
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,253 @@ | ||
| # Copyright 2025 The Marin Authors | ||
| # | ||
| # Licensed under the Apache License, Version 2.0 (the "License"); | ||
| # you may not use this file except in compliance with the License. | ||
| # You may obtain a copy of the License at | ||
| # | ||
| # https://www.apache.org/licenses/LICENSE-2.0 | ||
| # | ||
| # Unless required by applicable law or agreed to in writing, software | ||
| # distributed under the License is distributed on an "AS IS" BASIS, | ||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
| # See the License for the specific language governing permissions and | ||
| # limitations under the License. | ||
|
|
||
| """Speedruns using the AdamW/Muon optimizer for various Llama model sizes (Chinchilla optimal steps) and batch size. | ||
|
|
||
| Optimizer configs were searched & provided by Kaiyue Wen in https://wandb.ai/marin-community/marin/reports/Fantastic-Optimizers-and-Where-to-Find-Them--VmlldzoxMjgzMzQ2NQ | ||
| """ | ||
|
|
||
| import dataclasses | ||
| import logging | ||
|
|
||
| from levanter.optim import AdamConfig, MuonConfig | ||
|
|
||
| from experiments.llama import llama_1_4b, llama_150m, llama_300m, llama_600m | ||
| from experiments.simple_train_config import SimpleTrainConfig | ||
| from marin.execution.executor import executor_main | ||
| from marin.resources import TpuPodConfig | ||
| from marin.speedrun.speedrun import Author, SpeedrunConfig, default_speedrun | ||
|
|
||
| AUTHOR = Author(name="Franz Cesista", affiliation="", url="https://leloykun.github.io") | ||
|
|
||
| logger = logging.getLogger("ray") | ||
|
|
||
|
|
||
| def get_num_train_steps(param_count, batch_size, seq_len): | ||
| """Compute the number of steps for Chinchilla optimal training (20x params tokens).""" | ||
| total_tokens = param_count * 20 | ||
| tokens_per_step = batch_size * seq_len | ||
| return total_tokens // tokens_per_step | ||
|
|
||
|
|
||
| def build_config(optimizer_name: str, size: str, batch_size: int, seq_len: int = 4096) -> tuple[str, SpeedrunConfig]: | ||
| # Parameter counts | ||
| param_counts = { | ||
| "130m": 130_000_000, | ||
| "300m": 300_000_000, | ||
| "520m": 520_000_000, | ||
| "1_2b": 1_200_000_000, | ||
| } | ||
|
|
||
| # Model configs | ||
| model_cfgs = { | ||
| "130m": llama_150m, | ||
| "300m": llama_300m, | ||
| "520m": llama_600m, | ||
| "1_2b": llama_1_4b, | ||
| } | ||
|
|
||
| # Resource configs | ||
| resource_cfgs = { | ||
| "130m": TpuPodConfig(tpu_type="v5p-32"), | ||
| "300m": TpuPodConfig(tpu_type="v5p-32"), | ||
| "520m": TpuPodConfig(tpu_type="v5p-32"), | ||
| "1_2b": TpuPodConfig(tpu_type="v5p-32"), | ||
| } | ||
|
|
||
| # Optimizer configs for each size | ||
| muon_configs = { | ||
| "130m": MuonConfig( | ||
| learning_rate=0.016, | ||
| adam_lr=0.0032, | ||
| weight_decay=0.1, | ||
| min_lr_ratio=0, | ||
| warmup=0, | ||
| momentum=0.95, | ||
| beta1=0.8, | ||
| beta2=0.98, | ||
| epsilon=1e-15, | ||
| muon_epsilon=1e-5, | ||
| max_grad_norm=1, | ||
| lr_schedule="linear", | ||
| decay=0.8, | ||
| ), | ||
| "300m": MuonConfig( | ||
| learning_rate=0.008, | ||
| adam_lr=0.0024, | ||
| weight_decay=0.1, | ||
| min_lr_ratio=0, | ||
| warmup=0, | ||
| momentum=0.98, | ||
| beta1=0.8, | ||
| beta2=0.98, | ||
| epsilon=1e-15, | ||
| muon_epsilon=1e-5, | ||
| max_grad_norm=1, | ||
| lr_schedule="linear", | ||
| decay=0.8, | ||
| ), | ||
| "520m": MuonConfig( | ||
| learning_rate=0.008, | ||
| adam_lr=0.0024, | ||
| weight_decay=0.1, | ||
| min_lr_ratio=0, | ||
| warmup=0, | ||
| momentum=0.98, | ||
| beta1=0.8, | ||
| beta2=0.98, | ||
| epsilon=1e-25, | ||
| muon_epsilon=1e-5, | ||
| max_grad_norm=1, | ||
| lr_schedule="linear", | ||
| decay=1, | ||
| ), | ||
| "1_2b": MuonConfig( | ||
| learning_rate=0.004, | ||
| adam_lr=0.0012, | ||
| weight_decay=0.1, | ||
| min_lr_ratio=0, | ||
| warmup=0, | ||
| momentum=0.98, | ||
| beta1=0.8, | ||
| beta2=0.98, | ||
| epsilon=1e-15, | ||
| muon_epsilon=1e-5, | ||
| max_grad_norm=2, | ||
| lr_schedule="linear", | ||
| decay=1, | ||
| ), | ||
| } | ||
| # AdamW optimizer configs for each size | ||
| adam_configs = { | ||
| "130m": AdamConfig( | ||
| learning_rate=0.008, | ||
| weight_decay=0.1, | ||
| min_lr_ratio=0, | ||
| warmup=2000, | ||
| beta1=0.9, | ||
| beta2=0.98, | ||
| epsilon=1e-20, | ||
| max_grad_norm=1, | ||
| nesterov=False, | ||
| ), | ||
| "300m": AdamConfig( | ||
| learning_rate=0.008, | ||
| weight_decay=0.1, | ||
| min_lr_ratio=0, | ||
| warmup=2000, | ||
| beta1=0.9, | ||
| beta2=0.98, | ||
| epsilon=1e-10, | ||
| max_grad_norm=1, | ||
| nesterov=False, | ||
| ), | ||
| "520m": AdamConfig( | ||
| learning_rate=0.004, | ||
| weight_decay=0.2, | ||
| min_lr_ratio=0, | ||
| warmup=1000, | ||
| beta1=0.9, | ||
| beta2=0.98, | ||
| epsilon=1e-10, | ||
| max_grad_norm=1, | ||
| nesterov=False, | ||
| ), | ||
| "1_2b": AdamConfig( | ||
| learning_rate=0.002, | ||
| weight_decay=0.2, | ||
| min_lr_ratio=0, | ||
| warmup=1000, | ||
| beta1=0.9, | ||
| beta2=0.98, | ||
| epsilon=1e-25, | ||
| max_grad_norm=2, | ||
| nesterov=False, | ||
| ), | ||
| } | ||
|
|
||
| # Descriptions | ||
| descriptions = { | ||
| "130m": ( | ||
| f"130M parameter model trained with the {optimizer_name} optimizer with tokens-per-step={seq_len*batch_size}." | ||
| ), | ||
| "300m": ( | ||
| f"300M parameter model trained with the {optimizer_name} optimizer with tokens-per-step={seq_len*batch_size}." | ||
| ), | ||
| "520m": ( | ||
| f"520M parameter model trained with the {optimizer_name} optimizer with tokens-per-step={seq_len*batch_size}." | ||
| ), | ||
| "1_2b": ( | ||
| f"1.2B parameter model trained with the {optimizer_name} optimizer with tokens-per-step={seq_len*batch_size}." | ||
| ), | ||
| } | ||
|
|
||
| # Names for the runs | ||
| run_names = { | ||
| "130m": f"llama_130m_{optimizer_name}_tps{seq_len*batch_size}", | ||
| "300m": f"llama_300m_{optimizer_name}_tps{seq_len*batch_size}", | ||
| "520m": f"llama_520m_{optimizer_name}_tps{seq_len*batch_size}", | ||
| "1_2b": f"llama_1_2b_{optimizer_name}_tps{seq_len*batch_size}", | ||
| } | ||
|
|
||
| # Gather config for the requested size | ||
| if size not in param_counts: | ||
| raise ValueError(f"Unknown size: {size}") | ||
|
|
||
| param_count = param_counts[size] | ||
| model_config = dataclasses.replace(model_cfgs[size], seq_len=seq_len) | ||
| seq_len = model_config.seq_len | ||
| resource_config = resource_cfgs[size] | ||
| if optimizer_name == "muon": | ||
| optimizer_config = muon_configs[size] | ||
| elif optimizer_name == "adamw": | ||
| optimizer_config = adam_configs[size] | ||
| else: | ||
| raise NotImplementedError(f"Optimizer {optimizer_name} not supported yet in this sweep.") | ||
| description = descriptions[size] | ||
| run_name = run_names[size] | ||
|
|
||
| num_train_steps = get_num_train_steps(param_count, batch_size, seq_len) | ||
|
|
||
| # Taken from Simo Ryu's observation that lr ~ sqrt(BS) also holds for Shampoo & Muon: https://x.com/cloneofsimo/status/1907731069878825400 | ||
| baseline_batch_size = 128 | ||
| learning_rate = optimizer_config.learning_rate * (batch_size / baseline_batch_size)**0.5 | ||
| train = SimpleTrainConfig( | ||
| resource_config, | ||
| train_batch_size=batch_size, | ||
| num_train_steps=num_train_steps, | ||
| learning_rate=learning_rate, | ||
| optimizer_config=optimizer_config, | ||
|
Comment on lines
+224
to
+230
|
||
| ) | ||
| cfg = SpeedrunConfig( | ||
| author=AUTHOR, | ||
| description=description, | ||
| model_config=model_config, | ||
| train_config=train, | ||
| ) | ||
| return run_name, cfg | ||
|
|
||
|
|
||
| if __name__ == "__main__": | ||
| runs = [] | ||
| for optimizer_name in ["muon", "adamw"]: | ||
| for model_size in ["130m", "300m"]: # For future sweep, add "520m", "1_2b" | ||
| for batch_size in [64, 128, 256, 512, 1024]: | ||
| runs.append(build_config(optimizer_name, model_size, batch_size)) | ||
|
|
||
| steps = [] | ||
| for name, cfg in runs: | ||
| cfg.print_run_info() | ||
| steps.extend(default_speedrun(name, cfg)) | ||
|
|
||
| executor_main(steps=steps, description="Muon/AdamW speedruns (Chinchilla optimal) | Batch Size Sweep") | ||
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
For MuonConfig, both
learning_rateandadam_lrshould be scaled with batch size according to the sqrt(BS) scaling rule mentioned in the comment on line 222. Currently, onlylearning_rateis being scaled.The fix should scale both learning rates: