Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
35 changes: 35 additions & 0 deletions experiments/speedrun/llama_50m_muon_1x/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,35 @@
# 50M Llama with Muon Optimizer (1× Chinchilla)

**Model:** 50M parameter Llama
**Optimizer:** Muon
**Data Scale:** 1× Chinchilla-optimal (1B tokens)
**Expected BPB:** 1.38-1.42

## Rationale

Baseline validation experiment. Tests whether Muon beats Adam at standard Chinchilla-optimal scale before investing in 4× data runs. This experiment establishes whether Muon's advantages hold at the canonical 20:1 token-to-parameter ratio.

## Hyperparameters

- **Learning rate:** 0.020
- **Batch size:** 128
- **Training steps:** 7,629 (1B tokens / 128 batch / 1024 seq_len)
- **Optimizer:** Muon with momentum=0.95, warmup=0
- **Evaluation:** Every 500 steps

## Key Differences from 4x Experiment

- 1/4 the data (1B vs 4B tokens)
- 1/4 the training steps (7,629 vs 30,518)
- Shorter time limit (30 minutes vs 2 hours)
- Same hyperparameters

## Running

```bash
sbatch submit_slurm.sh
```

## Expected Results

If Muon maintains its efficiency advantage at 1× scale, we expect BPB around 1.38-1.42. This would validate proceeding with 4× data experiments.
130 changes: 130 additions & 0 deletions experiments/speedrun/llama_50m_muon_1x/speedrun_results.json
Original file line number Diff line number Diff line change
@@ -0,0 +1,130 @@
{
"runs": [
{
"run_info": {
"author": {
"affiliation": "Northeastern University",
"name": "redagavin",
"url": "https://redagavin.github.io/"
},
"description": "Phase 1: 50M Llama with Muon at 1\u00d7 Chinchilla (1B tokens). Baseline validation.",
"device_flops": 989500000000000.0,
"eval/paloma/c4_en/bpb": 1.398867130279541,
"model_config": {
"activation_function": "silu",
"attn_backend": null,
"cross_entropy_block_size": null,
"flash_attention_block_size": null,
"gradient_checkpointing": true,
"head_dim": null,
"hidden_dim": 192,
"hybrid_norm": false,
"initializer_range": 0.02,
"input_embedding_norm": false,
"intermediate_dim": 448,
"layer_norm_epsilon": 1e-05,
"num_heads": 2,
"num_kv_heads": 2,
"num_layers": 4,
"reference_checkpoint": "NousResearch/Llama-2-7b-hf",
"rope": {
"factor": 1.0,
"theta": 10000
},
"scan_layers": true,
"seq_len": 1024,
"tie_word_embeddings": false,
"tokenizer": null,
"upcast_attn": false,
"use_bias": false,
"use_layer_norm_weight": true,
"use_qk_norm": false
},
"model_flops": 1.6698528441040896e+17,
"model_size": 50874048,
"num_chips": 1,
"num_devices": 1,
"resources": {
"accelerator_type": "H200",
"device_flops_override": null,
"gpu_count": 1
},
"run_completion_timestamp": "2025-11-23 07:58:21 UTC",
"tokenized_dataset": "ExecutorStep(name='tokenized/subcache/fineweb-edu-10B', fn=<function _actually_download_pretokenized_cache at 0x154b84eb4ea0>, config=PretokenizedCacheDownloadConfig(cache_path=OutputName(name=None), tokenizer=VersionedValue(value='stanford-crfm/marin-tokenizer'), hf_repo_id=VersionedValue(value='marin-community/fineweb-edu-pretokenized-10B'), hf_revision=VersionedValue(value=None), hf_repo_type_prefix='datasets', hf_token=None, format=TextLmDatasetFormat(text_key='text'), cache_options=None, tags=[]), description=None, override_output_path=None, pip_dependency_groups=None)",
"total_tokens": 999948288,
"train_config": {
"allow_partial_checkpoint": false,
"beta1": null,
"beta2": null,
"cycle_length": null,
"data_seed": null,
"decay": null,
"ema_beta": null,
"epsilon": null,
"initialize_from_checkpoint_path": null,
"initialize_from_hf": null,
"int8": false,
"learning_rate": 0.02,
"lr_schedule": null,
"max_eval_batches": null,
"max_grad_norm": null,
"min_lr_ratio": null,
"num_train_steps": 7629,
"optimizer_config": {
"adam_lr": 0.004,
"adam_weight_decay": null,
"backend_steps": 5,
"beta1": 0.8,
"beta2": 0.98,
"cooldown": null,
"cycle_length": null,
"cycles": null,
"decay": 0.8,
"default_weight_decay_mask": null,
"epsilon": 1e-15,
"haps": null,
"learning_rate": 0.02,
"lr": 0.02,
"lr_schedule": "linear",
"max_grad_norm": 1,
"min_lr_ratio": 0,
"momentum": 0.95,
"muon_epsilon": 1e-05,
"nesterov": true,
"rewarmup": 0.0,
"use_kimi_scaling": false,
"warmup": 0,
"weight_decay": 0.0,
"weight_decay_modules": null
},
"per_device_eval_parallelism": null,
"reset_data_loader_on_init": true,
"rewarmup": null,
"skip_bad_steps": false,
"steps_per_eval": 500,
"steps_per_export": 10000,
"steps_per_hf_export": null,
"steps_per_task_eval": null,
"train_batch_size": 128,
"warmup": null,
"watch": {
"include_histograms": false,
"include_norms": true,
"include_per_parameter_norms": true,
"interval": 10,
"split_scan_layers": true,
"watch_targets": [
"grads",
"params"
]
},
"weight_decay": null,
"z_loss_weight": null
},
"training_hardware_flops": 1.1666472839337308e+18,
"training_time": 1179.0270681492984,
"wandb_run_link": "https://wandb.ai/marin-speedrun/marin-speedrun/runs/llama_50m_muon_1x-bd5fc4"
}
}
]
}
72 changes: 72 additions & 0 deletions experiments/speedrun/llama_50m_muon_1x/train.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,72 @@
# Copyright 2025 The Marin Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
Phase 1: 50M Llama with Muon optimizer at 1× Chinchilla-optimal data.

Baseline validation: Does Muon beat Adam at standard scale?
Expected: 1.38-1.42 BPB
"""

from levanter.optim import MuonConfig

from experiments.llama import llama_50m
from experiments.simple_train_config import SimpleTrainConfig
from marin.execution.executor import executor_main
from marin.resources import GpuConfig
Copy link

Copilot AI Dec 8, 2025

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

The module marin.resources does not exist. GpuConfig should be imported from fray.cluster instead. Change to: from fray.cluster import ResourceConfig

Copilot uses AI. Check for mistakes.
from marin.speedrun.speedrun import Author, SpeedrunConfig, default_speedrun


muon_config = MuonConfig(
learning_rate=0.020,
adam_lr=0.004,
momentum=0.95,
beta1=0.8,
beta2=0.98,
epsilon=1e-15,
muon_epsilon=1e-5,
max_grad_norm=1,
warmup=0,
min_lr_ratio=0,
lr_schedule="linear",
decay=0.8,
)

# Calculate steps for 1× Chinchilla (1B tokens)
# 50M params × 1 × 20 = 1B tokens
# 1B tokens / (128 batch × 1024 seq_len) = 7,629 steps
num_train_steps = 7629

speedrun_config = SpeedrunConfig(
author=Author(
name="redagavin",
affiliation="Northeastern University",
url="https://redagavin.github.io/"
),
description="Phase 1: 50M Llama with Muon at 1× Chinchilla (1B tokens). Baseline validation.",
model_config=llama_50m,
train_config=SimpleTrainConfig(
GpuConfig(gpu_count=1, accelerator_type="H200"),
Copy link

Copilot AI Dec 8, 2025

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

GpuConfig constructor takes parameters type and count, not gpu_count and accelerator_type. Additionally, following the pattern in other speedrun experiments (e.g., llama_50m_h200.py), you should use ResourceConfig.with_gpu("H200", count=1) instead of directly instantiating GpuConfig.

Copilot uses AI. Check for mistakes.
train_batch_size=128,
num_train_steps=num_train_steps,
learning_rate=muon_config.learning_rate,
optimizer_config=muon_config,
steps_per_eval=500,
),
)

speedrun_config.print_run_info()

if __name__ == "__main__":
executor_main(steps=default_speedrun("llama_50m_muon_1x", speedrun_config))