-
Notifications
You must be signed in to change notification settings - Fork 328
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
4 changed files
with
316 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,13 @@ | ||
# Copyright 1999-2021 Alibaba Group Holding Ltd. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,222 @@ | ||
# Copyright 1999-2021 Alibaba Group Holding Ltd. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
import itertools | ||
import pytest | ||
|
||
|
||
from ..core import OptimizationRule, ReplaceSubgraphError | ||
from .... import tensor as mt | ||
from .... import dataframe as md | ||
|
||
|
||
class _MockRule(OptimizationRule): | ||
def apply(self) -> bool: | ||
pass | ||
|
||
def replace_subgraph(self, graph, removed_nodes, new_results=None): | ||
self._replace_subgraph(graph, removed_nodes, new_results) | ||
|
||
|
||
def test_replace_tileable_subgraph(): | ||
""" | ||
Original Graph: | ||
s1 ---> c1 ---> v1 ---> v4 ----> v6(output) <--- v5 <--- c5 <--- s5 | ||
| ^ | ||
| | | ||
V | | ||
v3 ------| | ||
^ | ||
| | ||
s2 ---> c2 ---> v2 | ||
Target Graph: | ||
s1 ---> c1 ---> v1 ---> v7 ----> v8(output) <--- v5 <--- c5 <--- s5 | ||
^ | ||
| | ||
s2 ---> c2 ---> v2 | ||
The nodes [v3, v4, v6] will be removed. | ||
Subgraph only contains [v7, v8] | ||
""" | ||
s1 = mt.random.randint(0, 100, size=(5, 4)) | ||
v1 = md.DataFrame(s1, columns=list("ABCD"), chunk_size=5) | ||
s2 = mt.random.randint(0, 100, size=(5, 4)) | ||
v2 = md.DataFrame(s2, columns=list("ABCD"), chunk_size=5) | ||
v3 = v1.add(v2) | ||
v4 = v3.add(v1) | ||
s5 = mt.random.randint(0, 100, size=(5, 4)) | ||
v5 = md.DataFrame(s5, columns=list("ABCD"), chunk_size=4) | ||
v6 = v5.sub(v4) | ||
g1 = v6.build_graph() | ||
v7 = v1.sub(v2) | ||
v8 = v7.add(v5) | ||
g2 = v8.build_graph() | ||
|
||
# Here we use a trick way to construct the subgraph for test only | ||
key_to_node = dict() | ||
for node in g2.iter_nodes(): | ||
key_to_node[node.key] = node | ||
for key, node in key_to_node.items(): | ||
if key != v7.key and key != v8.key: | ||
g2.remove_node(node) | ||
r = _MockRule(g1, None, None) | ||
for node in g1.iter_nodes(): | ||
key_to_node[node.key] = node | ||
|
||
c1 = g1.successors(key_to_node[s1.key])[0] | ||
c2 = g1.successors(key_to_node[s2.key])[0] | ||
c5 = g1.successors(key_to_node[s5.key])[0] | ||
|
||
expected_results = [v8.outputs[0]] | ||
r.replace_subgraph( | ||
g2, {key_to_node[op.key] for op in [v3, v4, v6]}, expected_results | ||
) | ||
assert g1.results == expected_results | ||
|
||
expected_nodes = {s1, c1, v1, s2, c2, v2, s5, c5, v5, v7, v8} | ||
assert set(g1) == {key_to_node[n.key] for n in expected_nodes} | ||
|
||
expected_edges = { | ||
s1: [c1], | ||
c1: [v1], | ||
v1: [v7], | ||
s2: [c2], | ||
c2: [v2], | ||
v2: [v7], | ||
s5: [c5], | ||
c5: [v5], | ||
v5: [v8], | ||
v7: [v8], | ||
v8: [], | ||
} | ||
for pred, successors in expected_edges.items(): | ||
pred_node = key_to_node[pred.key] | ||
assert g1.count_successors(pred_node) == len(successors) | ||
for successor in successors: | ||
assert g1.has_successor(pred_node, key_to_node[successor.key]) | ||
|
||
|
||
def test_replace_null_subgraph(): | ||
""" | ||
Original Graph: | ||
s1 ---> c1 ---> v1 ---> v3 <--- v2 <--- c2 <--- s2 | ||
Target Graph: | ||
c1 ---> v1 ---> v3 <--- v2 <--- c2 | ||
The nodes [s1, s2] will be removed. | ||
Subgraph is None | ||
""" | ||
s1 = mt.random.randint(0, 100, size=(10, 4)) | ||
v1 = md.DataFrame(s1, columns=list("ABCD"), chunk_size=5) | ||
s2 = mt.random.randint(0, 100, size=(10, 4)) | ||
v2 = md.DataFrame(s2, columns=list("ABCD"), chunk_size=5) | ||
v3 = v1.add(v2) | ||
g1 = v3.build_graph() | ||
key_to_node = {node.key: node for node in g1.iter_nodes()} | ||
c1 = g1.successors(key_to_node[s1.key])[0] | ||
c2 = g1.successors(key_to_node[s2.key])[0] | ||
r = _MockRule(g1, None, None) | ||
expected_results = [v3.outputs[0]] | ||
# delete c5 s5 will fail | ||
with pytest.raises(ReplaceSubgraphError) as e: | ||
r.replace_subgraph(None, {key_to_node[op.key] for op in [s1, s2]}) | ||
assert g1.results == expected_results | ||
assert set(g1) == {key_to_node[n.key] for n in {s1, c1, v1, s2, c2, v2, v3}} | ||
expected_edges = { | ||
s1: [c1], | ||
c1: [v1], | ||
v1: [v3], | ||
s2: [c2], | ||
c2: [v2], | ||
v2: [v3], | ||
v3: [], | ||
} | ||
for pred, successors in expected_edges.items(): | ||
pred_node = key_to_node[pred.key] | ||
assert g1.count_successors(pred_node) == len(successors) | ||
for successor in successors: | ||
assert g1.has_successor(pred_node, key_to_node[successor.key]) | ||
|
||
c1.inputs.clear() | ||
c2.inputs.clear() | ||
r.replace_subgraph(None, {key_to_node[op.key] for op in [s1, s2]}) | ||
assert g1.results == expected_results | ||
assert set(g1) == {key_to_node[n.key] for n in {c1, v1, c2, v2, v3}} | ||
expected_edges = { | ||
c1: [v1], | ||
v1: [v3], | ||
c2: [v2], | ||
v2: [v3], | ||
v3: [], | ||
} | ||
for pred, successors in expected_edges.items(): | ||
pred_node = key_to_node[pred.key] | ||
assert g1.count_successors(pred_node) == len(successors) | ||
for successor in successors: | ||
assert g1.has_successor(pred_node, key_to_node[successor.key]) | ||
|
||
|
||
def test_replace_subgraph_without_removing_nodes(): | ||
""" | ||
Original Graph: | ||
s1 ---> c1 ---> v1 ---> v4 <--- v2 <--- c2 <--- s2 | ||
Target Graph: | ||
s1 ---> c1 ---> v1 ---> v4 <--- v2 <--- c2 <--- s2 | ||
s3 ---> c3 ---> v3 | ||
Nothing will be removed. | ||
Subgraph only contains [s3, c3, v3] | ||
""" | ||
s1 = mt.random.randint(0, 100, size=(10, 4)) | ||
v1 = md.DataFrame(s1, columns=list("ABCD"), chunk_size=5) | ||
s2 = mt.random.randint(0, 100, size=(10, 4)) | ||
v2 = md.DataFrame(s2, columns=list("ABCD"), chunk_size=5) | ||
v4 = v1.add(v2) | ||
g1 = v4.build_graph() | ||
|
||
s3 = mt.random.randint(0, 100, size=(10, 4)) | ||
v3 = md.DataFrame(s3, columns=list("ABCD"), chunk_size=5) | ||
g2 = v3.build_graph() | ||
key_to_node = { | ||
node.key: node for node in itertools.chain(g1.iter_nodes(), g2.iter_nodes()) | ||
} | ||
expected_results = [v3.outputs[0], v4.outputs[0]] | ||
c1 = g1.successors(key_to_node[s1.key])[0] | ||
c2 = g1.successors(key_to_node[s2.key])[0] | ||
c3 = g2.successors(key_to_node[s3.key])[0] | ||
r = _MockRule(g1, None, None) | ||
r.replace_subgraph(g2, None, expected_results) | ||
assert g1.results == expected_results | ||
assert set(g1) == { | ||
key_to_node[n.key] for n in {s1, c1, v1, s2, c2, v2, s3, c3, v3, v4} | ||
} | ||
expected_edges = { | ||
s1: [c1], | ||
c1: [v1], | ||
v1: [v4], | ||
s2: [c2], | ||
c2: [v2], | ||
v2: [v4], | ||
s3: [c3], | ||
c3: [v3], | ||
v3: [], | ||
v4: [], | ||
} | ||
for pred, successors in expected_edges.items(): | ||
pred_node = key_to_node[pred.key] | ||
assert g1.count_successors(pred_node) == len(successors) | ||
for successor in successors: | ||
assert g1.has_successor(pred_node, key_to_node[successor.key]) |