Skip to content

matthiaskramm/mrscake

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

About:

mrscake (read: "Mrs. Cake") is a machine learning library that automatically picks the best[1] model for you. It can also generate code. Generated code might look like this:

#### GENERATED CODE ####
def predict(aquatic, domestic, eggs, backbone, feathers, 
            predator, airborne, hair, toothed, tail, 
            breathes, catsize, venomous, legs, fins, milk):
    if eggs == "no":
        return "mammal"
    else:
        if backbone == "yes":
            return "bird"
        else:
            if aquatic == "no":
                return "insect"
            else:
                return "crustacean"

Compiling:

Compile it using

    ./configure
    make
    make install

.

It has a Ruby and a Python interface.

Usage:

Python

import mrscake
data = mrscake.DataSet()
data.add(["a", 1.0, "blue"], output="yes")
data.add(["a", 3.0, "red"], output="yes")
data.add(["b", 2.0, "red"], output="no")
data.add(["b", 3.0, "blue"], output="no")
data.add(["a", 5.0, "blue"], output="yes")
data.add(["b", 4.0, "blue"], output="yes")
model = data.train()

result = model.predict(["a", 2.0, "red"])

code = model.generate_code("python") # or: ruby, javascript, c

print code

Ruby

require 'mrscake'
data = MrsCake::DataSet.new
data.add([:a, 1.0, :blue], :yes)
data.add([:a, 3.0, :red], :yes)
data.add([:b, 2.0, :red], :no)
data.add([:b, 3.0, :blue], :no)
data.add([:a, 5.0, :blue], :yes)
data.add([:b, 4.0, :blue], :yes)
model = data.train()
model.print

result = model.predict([:a, 2.0, :red])

code = model.generate_code("ruby") # or: ruby, javascript, c

puts code

[1] Mrscake picks a model by an information-theoretic approach called MDL: It selects the model with the shortest description length. I.e., from a code generation standpoint, it gives you the shortest piece of code that would recognize all the examples in your training set. (Also known of the Kolmogorov complexity of the labels, given the feature data)

About

machine learning library & code generator

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 4

  •  
  •  
  •  
  •  

Languages