Skip to content

mbeale/timeseriesql-matplotlib

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Contributors Forks Stargazers Issues LinkedIn


TimeSeriesQL-Matplotlib

A plotting backend for the TimeSeriesQL library

Table of Contents

About The Project

This project adds a matplotlib plotting backend for the TimeSeriesQL project.

Built With

Getting Started

To get a local copy up and running follow these simple steps.

Prerequisites

The requirements are in the requirements.txt file.

Installation

pip

pip install timeseriesql-matplotlib

manual

  1. Clone the timeseriesql-matplotlib
git clone https:://github.com/mbeale/timeseriesql-matplotlib.git
  1. Install library
cd timeseriesql-matplotlib
python setup.py install 

Usage

The charting library operates on TimeSeries objects. The Axes can be overriden to control the placement of the charts. All the below examples use the following code:

import matplotlib.pyplot as plt

from timeseriesql_matplotlib import MatplotlibTQL as mp
from timeseriesql.backends.csv_backend import CSVBackend

data = CSVBackend(x for x in "AAPL.csv")[:] #CSV of AAPL stock data header = (open, close, high, low, adj close)

Line Plot

mp().line_plot(data)
plt.show()

Line Plot Example

Stacked Plot

mp().stacked_plot(data)
plt.show()

Stacked Plot Example

Timebox Plot

mp().timebox_plot(data[:,0])
plt.show()
"""
the plot arguement defaults to auto but you can set a specific period
s    - second buckets
m    - minute buckets
h    - hour buckets
d    - day buckets
mth  - month buckets
y    - year buckets
"""

Timebox Plot Example

Heatmap Plot

mp().heatmap_plot(data[{'label': 'Close'}])
plt.show()
"""
the plot arguement defaults to auto but you can set a specific period
s    - second buckets
m    - minute buckets
h    - hour buckets
d    - day buckets
mth  - month buckets
y    - year buckets
"""

Heatmap Plot Example

Distribution Plot

mp().dist_plot(data[:,0], percentiles=[25,75]) #percentiles are optional
plt.show()

Distribution Plot Example

Correlogram Plot

mp().correlogram_plot(data)
plt.show()

Correlogram Plot Example

Lag Plot

mp().lag_plot( data[{'label': 'Open'}])
plt.show()

Lag Plot Example

Text Plot

mp().line_plot(data)
mp().text_plot(data[-1,0], title="A Nice Text Box", thresholds=[(0, 'green', 'white'), (20, 'cornflowerblue', 'white'), (None, 'darkorange', 'white')])

Text Plot Example

Layout Example

from matplotlib.gridspec import GridSpec

fig = plt.figure(constrained_layout=True, figsize=(20,20))

gs = GridSpec(4, 4, figure=fig)
ax1 = fig.add_subplot(gs[0, 0])
ax2 = fig.add_subplot(gs[0, 1])
ax3 = fig.add_subplot(gs[0, 2])
ax4 = fig.add_subplot(gs[0, 3])
ax5 = fig.add_subplot(gs[1:3, :3])
ax6 = fig.add_subplot(gs[1, 3])
ax7 = fig.add_subplot(gs[2, 3])
ax8 = fig.add_subplot(gs[3, :2])
ax9 = fig.add_subplot(gs[3, 2:])


mp().text_plot(data[:,0].mean(), ax=ax1, title="Avg Close")
mp().text_plot(data[:,1].mean(), ax=ax2, title="Avg High")
mp().text_plot(data[:,2].mean(), ax=ax3, title="Avg Low")
mp().line_plot(data[:,0], ax = ax4)
mp().line_plot(data, ax=ax5)
mp().line_plot(data[:,1], ax=ax6)
mp().line_plot(data[:,2], ax=ax7)
mp().line_plot(data[:,3], ax=ax8)
mp().line_plot(data[:,4], ax=ax9)

Text Plot Example

Roadmap

See the open issues for a list of proposed features (and known issues).

Contributing

Contributions are what make the open source community such an amazing place to be learn, inspire, and create. Any contributions you make are greatly appreciated.

  1. Fork the Project
  2. Create your Feature Branch (git checkout -b feature/AmazingFeature)
  3. Commit your Changes (git commit -m 'Add some AmazingFeature')
  4. Push to the Branch (git push origin feature/AmazingFeature)
  5. Open a Pull Request

License

Distributed under the MIT License. See LICENSE for more information.

Contact

Michael Beale - [email protected]

Project Link: https://github.com/mbeale/timeseriesql-matplotlib